-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreconstruct_images.py
103 lines (83 loc) · 2.54 KB
/
reconstruct_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import numpy as np
import torch
import argparse
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import torch.nn as nn
import torch.optim as optim
#from torchsummary import summary
from dataset_wae import TrainDataset, TestDataset
from wae_gan import Encoder, Decoder
def transform_back(tens):
return (tens/2 + 0.5)
def main():
parser = argparse.ArgumentParser(description="PyTorch WAE-GAN")
parser.add_argument(
"-batch_size",
type=int,
default=100,
metavar="N",
help="input batch size for training (default: 100)",
)
parser.add_argument(
"-epochs",
type=int,
default=100,
help="number of epochs to train (default: 100)",
)
parser.add_argument(
"-lr",
type=float,
default=0.0001,
help="learning rate (default: 0.0001)",
)
parser.add_argument(
"-dim_h", type=int, default=128, help="hidden dimension (default: 128)"
)
parser.add_argument(
"-n_z", type=int, default=256, help="hidden dimension of z (default: 8)"
)
parser.add_argument(
"-LAMBDA",
type=float,
default=0.01,
help="regularization coef MMD term (default: 10)",
)
parser.add_argument(
"-n_channel", type=int, default=1, help="input channels (default: 1)"
)
parser.add_argument(
"-sigma",
type=float,
default=0.5,
help="variance of hidden dimension (default: 1)",
)
args = parser.parse_args()
ground_truth_data = torch.tensor(np.load('./ground_truth_images.npy'))
print(ground_truth_data.shape)
encoder = Encoder(args)
decoder = Decoder(args)
print('model definition')
print(encoder)
state_dict = torch.load('./encoder.pt', map_location='cpu')
print('loaded model')
for k, v in state_dict.items():
if 'fc' in k:
print(k)
print(v.shape)
print()
encoder.load_state_dict(torch.load('./encoder.pt', map_location='cpu'))
encoder.eval()
decoder.load_state_dict(torch.load('./decoder.pt', map_location='cpu'))
decoder.eval()
mapping = encoder(ground_truth_data)
print(torch.mean(mapping, axis=1), torch.std(mapping, axis=1))
inv_mapping = decoder(mapping)
save_image(transform_back(ground_truth_data.data),
"./ground_truth_data.png",
)
save_image(transform_back(inv_mapping.data),
"./reconstructed_data.png",
)
if __name__ == "__main__":
main()