-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmilner_test.go
158 lines (144 loc) · 4.49 KB
/
milner_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
// Copyright (c) 2021 Silvano DAL ZILIO
//
// MIT License
package rudd
import (
"math/big"
"testing"
)
// milner is an example of using BDD for state space computation. It is
// directly adapted from the examples in the Buddy distribution. It computes the
// reachable state of a system composed of N cyclers, with an initial BDD size
// of size. For this system, we have an anlytical formula to compute the size of
// the state space.
func milner(tb testing.TB, fast bool, varnum int, options ...func(*configs)) (*BDD, Node) {
bdd, err := New(varnum*6, options...)
if err != nil {
tb.Error(err)
}
c := make([]Node, varnum)
cp := make([]Node, varnum)
t := make([]Node, varnum)
tp := make([]Node, varnum)
h := make([]Node, varnum)
hp := make([]Node, varnum)
for n := 0; n < varnum; n++ {
c[n] = bdd.Ithvar(n * 6)
cp[n] = bdd.Ithvar(n*6 + 1)
t[n] = bdd.Ithvar(n*6 + 2)
tp[n] = bdd.Ithvar(n*6 + 3)
h[n] = bdd.Ithvar(n*6 + 4)
hp[n] = bdd.Ithvar(n*6 + 5)
}
nvar := make([]int, varnum*3)
pvar := make([]int, varnum*3)
for n := 0; n < varnum*3; n++ {
nvar[n] = n * 2 // normal variables
pvar[n] = n*2 + 1 // primed variables
}
replacer, err := bdd.NewReplacer(pvar, nvar)
if err != nil {
tb.Error(err)
}
// We create a BDD for the initial state of Milner's cyclers.
I := bdd.And(c[0], bdd.Not(h[0]), bdd.Not(t[0]))
for i := 1; i < varnum; i++ {
I = bdd.And(I, bdd.Not(c[i]), bdd.Not(h[i]), bdd.Not(t[i]))
}
// A builds a BDD expressing that all other variables than 'z' is unchanged.
A := func(x, y []Node, z int) Node {
res := bdd.True()
for i := 0; i < varnum; i++ {
if i != z {
res = bdd.And(res, bdd.Equiv(x[i], y[i]))
}
}
return res
}
// Now we compute the transition relation
T := bdd.False() // The monolithic transition relation
for i := 0; i < varnum; i++ {
P1 := bdd.And(c[i], bdd.Not(cp[i]), tp[i], bdd.Not(t[i]), hp[i], A(c, cp, i), A(t, tp, i), A(h, hp, i))
P2 := bdd.And(h[i], bdd.Not(hp[i]), cp[(i+1)%varnum], A(c, cp, (i+1)%varnum), A(h, hp, i), A(t, tp, varnum))
E := bdd.And(t[i], bdd.Not(tp[i]), A(t, tp, i), A(h, hp, varnum), A(c, cp, varnum))
T = bdd.Or(T, P1, bdd.Or(P2, E))
}
// We compute the reachable states.
R := I // Reachable state space
normvar := bdd.Makeset(nvar)
count := 0
for {
count++
prev := R
if fast {
R = bdd.Or(bdd.Replace(bdd.AndExist(R, T, normvar), replacer), R)
} else {
R = bdd.Or(bdd.Replace(bdd.Exist(bdd.And(R, T), normvar), replacer), R)
}
if *prev == *R {
break
}
}
if _LOGLEVEL > 0 {
tb.Log("\n", bdd.Stats())
}
return bdd, R
}
func TestMilnerSlow(t *testing.T) {
for _, N := range []int{4, 5, 7, 11} {
// we choose a small size to stress test garbage collection
fast, Rfast := milner(t, true, N, Nodesize(100), Cachesize(25), Cacheratio(25))
slow, Rslow := milner(t, false, N, Nodesize(100), Cachesize(25), Cacheratio(25))
expected := big.NewInt(int64(N))
pow := big.NewInt(0)
pow.SetBit(pow, 4*N+1, 1)
expected.Mul(expected, pow)
fastresult := fast.Satcount(Rfast)
slowresult := slow.Satcount(Rslow)
if fastresult.Cmp(expected) != 0 || slowresult.Cmp(expected) != 0 {
t.Errorf("Error in Milner(%d), expected %s, actual %s (fast) and %s (slow)", N, expected, fastresult, slowresult)
}
}
}
func TestMilner(t *testing.T) {
for _, N := range []int{16, 20, 30, 50} {
// we choose a small size to stress test garbage collection
bdd, R := milner(t, true, N, Nodesize(100000))
expected := big.NewInt(int64(N))
pow := big.NewInt(0)
pow.SetBit(pow, 4*N+1, 1)
expected.Mul(expected, pow)
result := bdd.Satcount(R)
if result.Cmp(expected) != 0 {
t.Errorf("Error in Milner(%d), expected %s, actual %s", N, expected, result)
}
}
}
func TestMilner80(t *testing.T) {
N := 80
tt := func(buddy bool) {
bdd, R := milner(t, true, N, Nodesize(1000000), Cachesize(250000), Cacheratio(25))
expected := big.NewInt(int64(N))
pow := big.NewInt(0)
pow.SetBit(pow, 4*N+1, 1)
expected.Mul(expected, pow)
result := bdd.Satcount(R)
if result.Cmp(expected) != 0 {
t.Errorf("Error in Milner(%d), expected %s, actual %s", N, expected, result)
}
}
tt(true)
tt(false)
}
func BenchmarkMilner150(b *testing.B) {
// run the milner_system function b.N times
for n := 0; n < b.N; n++ {
milner(b, true, 150, Nodesize(1000000), Cachesize(250000), Cacheratio(25))
}
}
func BenchmarkMilner300(b *testing.B) {
// run the milner_system function b.N times
for n := 0; n < b.N; n++ {
milner(b, true, 300, Nodesize(1000000), Cachesize(250000), Cacheratio(25), Maxnodeincrease(1<<23))
}
}