-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdata_import.py
464 lines (395 loc) · 21.4 KB
/
data_import.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import argparse
import glob
import os
import numpy as np
import pandas as pd
from Bio import SeqIO
from data import sequence_complement, INDEX_COLS, LFC_COLS, SEQUENCE_FEATS, SCALAR_FEATS
# relevant columns
GUIDE_COLS = ['end', 'start', 'junction_dist_5p', 'junction_dist_3p', 'guide_type', 'guide_seq']
TRANSCRIPT_COLS = ['target_seq', 'length', 'cds_start', 'cds_stop']
JUNCTION_COLS = ['junction_id', 'junction_seq', 'junction_category']
COLUMNS_TO_SAVE = INDEX_COLS + ['guide_type'] + LFC_COLS + SEQUENCE_FEATS + SCALAR_FEATS
def process_raw_wessels_data(sub_dir, num_folds, seed):
"""
Process raw data from either Wessels et al. 2020 or 2022 and save the processed data as a Pandas DataFrame
:param sub_dir: a subdirectory containing raw data from one of the Wessels et al. papers
:param num_folds: number of validation folds
:param seed: random number seed
:return: None
"""
# prepare guide file
df_guide = pd.read_csv(os.path.join('data-raw', sub_dir, 'guide_table.txt'), delimiter='\t')
df_guide.rename(columns={
'TargetGene': 'gene',
'GuideID': 'guide_id',
'GuideSeq': 'guide_seq',
'Type': 'guide_type',
'Dist2Junction_5p': 'junction_dist_5p',
'Dist2Junction_3p': 'junction_dist_3p'
}, inplace=True)
df_guide = df_guide[df_guide.gene != 'NT']
df_guide = df_guide[df_guide.guide_type != 'NT']
df_guide['guide_seq'] = df_guide['guide_seq'].apply(lambda seq: seq[::-1])
for int_col in ['end', 'start', 'junction_dist_5p', 'junction_dist_3p']:
df_guide[int_col] = df_guide[int_col].astype(int)
df_guide = df_guide[INDEX_COLS + GUIDE_COLS]
df_guide.set_index(INDEX_COLS, inplace=True)
# prepare LFC file
df_lfc = pd.DataFrame()
for lfc_csv in glob.glob(os.path.join('data-raw', sub_dir, 'lfc', '*.csv')):
df_lfc = pd.concat([df_lfc, pd.read_csv(lfc_csv)])
df_lfc.rename(columns={'D30_R1': 'lfc_r1', 'D30_R2': 'lfc_r2', 'D30_R3': 'lfc_r3'}, inplace=True)
df_lfc['gene'] = [s.split('_')[0] for s in df_lfc.index.values]
df_lfc['guide_id'] = ['_'.join(s.split('_')[1:]) for s in df_lfc.index.values]
df_lfc.reset_index(drop=True, inplace=True)
df_lfc = df_lfc[INDEX_COLS + LFC_COLS]
df_lfc.set_index(INDEX_COLS, inplace=True)
# save non-targeting data
try:
df_nt = df_lfc.loc['NT', :].reset_index()[LFC_COLS]
df_nt.to_pickle(os.path.join('data-processed', sub_dir + '-nt.bz2'))
except KeyError:
print(sub_dir, 'has no non-targeting guides!')
# prepare transcript file
df_transcripts = pd.read_csv(os.path.join('data-raw', sub_dir, 'transcript_lut.tsv'), delimiter='\t')
df_transcripts.rename(columns={'gene_name': 'gene'}, inplace=True)
df_transcripts['cds_start'] = df_transcripts['cds_coord'].apply(lambda s: s.split('-')[0]).astype(int)
df_transcripts['cds_stop'] = df_transcripts['cds_coord'].apply(lambda s: s.split('-')[1]).astype(int)
df_transcripts = load_transcripts(df_transcripts, os.path.join('data-raw', sub_dir, 'transcripts'), '.fasta')
df_transcripts = df_transcripts[['gene'] + TRANSCRIPT_COLS]
df_transcripts.set_index('gene', inplace=True)
# load and join folding energy features
df_fold_mfe = pd.read_csv(os.path.join('data-raw', sub_dir, 'features', 'foldMFE.txt'), delimiter='\t')
del df_fold_mfe['Guide_Name']
df_fold_mfe.rename(columns={
'TargetGene': 'gene',
'GuideID': 'guide_id',
'MFE': 'mfe',
'DR': 'direct_repeat',
'Gquad': 'g_quad',
'Fold': 'guide_ss',
}, inplace=True)
df_fold_mfe.set_index(INDEX_COLS, inplace=True)
# load and join hybridization energy features
df_hyb_mfe = pd.read_csv(os.path.join('data-raw', sub_dir, 'features', 'hybMFE.txt'), delimiter='\t')
del df_hyb_mfe['Guide_Name']
df_hyb_mfe.rename(columns={
'TargetGene': 'gene',
'GuideID': 'guide_id',
'hybMFE_1.23': 'hybrid_mfe_1_23',
'hybMFE_15.9': 'hybrid_mfe_15_9',
'hybMFE_3.12': 'hybrid_mfe_3_12',
}, inplace=True)
df_hyb_mfe.set_index(INDEX_COLS, inplace=True)
# target site accessibility features
df_target_access = pd.read_csv(os.path.join('data-raw', sub_dir, 'features', 'targetAccess.txt'), delimiter='\t')
del df_target_access['Guide_Name']
df_target_access.rename(columns={
'TargetGene': 'gene',
'GuideID': 'guide_id',
'Log10_Unpaired': 'log_unpaired',
'Log10_Unpaired_p11': 'log_unpaired_11',
'Log10_Unpaired_p19': 'log_unpaired_19',
'Log10_Unpaired_p25': 'log_unpaired_25',
}, inplace=True)
df_target_access.set_index(['gene', 'guide_id'], inplace=True)
# merge tables
assert not df_guide.index.has_duplicates
assert not df_lfc.index.has_duplicates
assert not df_transcripts.index.has_duplicates
df_scalar_features = df_fold_mfe.join(df_hyb_mfe, how='inner')
df_scalar_features = df_scalar_features.join(df_target_access, how='inner')
# aggregate the data
df_data = df_guide.join(df_lfc, how='inner')
df_data = df_data.join(df_transcripts, how='left')
df_data = df_data.join(df_scalar_features, how='inner')
# cut away non-targeted gene sequence, while keeping nearby sequence context
for index, row in df_data.iterrows():
df_data.loc[index, 'target_seq'] = row['target_seq'][row['end'] - 1:row['start']]
df_data.loc[index, '5p_context'] = row['target_seq'][:row['end'] - 1]
df_data.loc[index, '3p_context'] = row['target_seq'][row['start']:]
# add normalized location of target site along transcript
guide_loc = df_data[['start', 'end']].mean(axis=1)
df_data['loc_utr_5p'] = guide_loc / (df_data['cds_start'] - 1)
df_data['loc_cds'] = (guide_loc - df_data['cds_start']) / (df_data['cds_stop'] - df_data['cds_start'])
df_data['loc_utr_3p'] = (guide_loc - df_data['cds_stop'] + 1) / (df_data['length'] - df_data['cds_stop'] + 1)
for location_float in ['loc_utr_5p', 'loc_cds', 'loc_utr_3p']:
df_data[location_float] = np.clip(df_data[location_float], a_min=0.0, a_max=1.0)
df_data['log_gene_len'] = np.log10(df_data['length'])
# keep only the columns of interest
df_data.reset_index(inplace=True)
keep_columns = [col for col in COLUMNS_TO_SAVE if col in df_data.columns]
missing_columns = list(set(COLUMNS_TO_SAVE) - set(keep_columns))
missing_columns.sort()
print(sub_dir, 'data is missing:', missing_columns)
df_data = df_data[keep_columns]
# add fold assignments and save data
df_data = fold_assignments(df_data, num_folds, seed)
df_data.to_pickle(os.path.join('data-processed', sub_dir + '.bz2'))
def process_hap_titration_data(num_folds, seed):
# load the data
data_dir = os.path.join('data-raw', 'hap-titration')
data = pd.read_csv(os.path.join(data_dir, 'Titration.GuideInfo.txt'), sep='\t').set_index('UID')
lfc = pd.read_csv(os.path.join(data_dir, 'Titration.L2FCs.txt'), sep='\t')
data = data.join(lfc[['HAP1_D14_R1', 'HAP1_D14_R2', 'HAP1_D14_R3']]).reset_index()
# rename columns
data = data.rename(columns={
'GeneName': 'gene',
'UID': 'guide_id',
'Type': 'guide_type',
'HAP1_D14_R1': 'lfc_r1',
'HAP1_D14_R2': 'lfc_r2',
'HAP1_D14_R3': 'lfc_r3',
'Dist2Junction_5p': 'junction_dist_5p',
'Dist2Junction_3p': 'junction_dist_3p',
'hybrid_mfe_1_23': 'hybrid_mfe_1_23',
'hybMFE_15.9': 'hybrid_mfe_15_9',
'hybMFE_3.12': 'hybrid_mfe_3_12',
'log_unpaired': 'log_unpaired',
'log10_unpaired_p11': 'log_unpaired_11',
'log10_unpaired_p19': 'log_unpaired_19',
'log10_unpaired_p25': 'log_unpaired_25',
})
# save non-targeting data and remove it
data_nt = data[data.guide_type == 'NT'].reset_index()[LFC_COLS]
data_nt.to_pickle(os.path.join('data-processed', 'hap-titration-nt.bz2'))
data = data[data.guide_type != 'NT']
# sequence features
data['guide_seq'] = data['GuideSeq'].apply(lambda seq: seq[::-1])
data['5p_context'] = data['TargetSeqContext'].apply(lambda seq: seq[:2])
data['target_seq'] = data['TargetSeqContext'].apply(lambda seq: seq[2:-2])
data['3p_context'] = data['TargetSeqContext'].apply(lambda seq: seq[-2:])
# target location
data['loc_utr_5p'] = data['loc'].apply(lambda loc: loc[1:-1].split(';')[0])
data['loc_cds'] = data['loc'].apply(lambda loc: loc[1:-1].split(';')[1])
data['loc_utr_3p'] = data['loc'].apply(lambda loc: loc[1:-1].split(';')[2])
# keep only the columns of interest
data.reset_index(inplace=True)
keep_columns = [col for col in COLUMNS_TO_SAVE if col in data.columns]
missing_columns = list(set(COLUMNS_TO_SAVE) - set(keep_columns))
missing_columns.sort()
print('HAP titration data is missing:', missing_columns)
data = data[keep_columns]
# add fold assignments and save data
data = fold_assignments(data, num_folds, seed)
data.to_pickle(os.path.join('data-processed', 'hap-titration.bz2'))
def process_all_junctions():
# features for all junctions
data = pd.read_csv('data-raw/junction/230717_all_gencode_guides_hyb_table_unique.txt', delimiter='\t')
data = data.rename(columns={
'gene_name': 'gene',
'ID': 'guide_id',
'GuideSeq': 'guide_seq',
'TargetSeqContext': 'target_seq',
'hybMFE_15.9': 'hybrid_mfe_15_9',
'hybMFE_3.12': 'hybrid_mfe_3_12',
'log10_unpaired_p11': 'log_unpaired_11',
'log10_unpaired_p19': 'log_unpaired_19',
'log10_unpaired_p25': 'log_unpaired_25',
})
data['guide_type'] = 'PM'
data['guide_seq'] = data['guide_seq'].apply(lambda seq: seq[::-1])
data['5p_context'] = data['target_seq'].apply(lambda s: s[:2])
data['3p_context'] = data['target_seq'].apply(lambda s: s[-2:])
data['target_seq'] = data['target_seq'].apply(lambda s: s[2:-2])
assert set(data['guide_seq'].apply(len).unique()) == set(data['target_seq'].apply(len).unique())
data['log_gene_len'] = np.log10(data['txEnd'] - data['txStart'])
data['strand'] = data['strand'].apply(lambda s: +1 if s == '+' else -1)
# finalize data
data = data[[col for col in COLUMNS_TO_SAVE if col in data.columns]]
data.to_pickle(os.path.join('data-processed', 'junction-all.bz2'))
def process_qpcr_junction_data():
# add qPCR data
pcr = pd.read_csv('data-raw/junction/230726_all_qPCR.txt', sep='\t').set_index(['guide_id'])
ids = pd.read_csv('data-raw/junction/230814_gencode_v41_universal_guideIDs.txt', sep='\t')
assert len(ids) == ids['guide_sequence'].nunique()
pcr = pd.merge(pcr, ids, how='left', on='guide_id')
pcr = pcr.rename(columns={'guide_sequence': 'guide_seq', 'avg_qpcr': 'observed_lfc'})[['guide_seq', 'observed_lfc']]
pcr['guide_seq'] = pcr['guide_seq'].apply(lambda seq: seq[::-1])
# join additional features
all_junctions = pd.read_pickle(os.path.join('data-processed', 'junction-all.bz2'))
pcr = pd.merge(pcr, all_junctions, how='left', on='guide_seq')
pcr.to_pickle(os.path.join('data-processed', 'junction-qpcr.bz2'))
def process_raw_junction_data(num_folds, seed):
"""
Process raw junction data and save the processed data as a Pandas DataFrame
:param num_folds: number of validation folds
:param seed: random number seed
:return: None
"""
# base directory
base_dir = os.path.join('data-raw', 'junction')
# process non-targeting data
data_nt = os.path.join(base_dir, '220301_R1_remove_TechPool_wno_batch_LFC_plus_a375_gene_expression.txt.gz')
data_nt = pd.read_csv(data_nt, sep='\t', low_memory=False).rename(columns={'sgrna': 'guide_id'})
data_nt = data_nt[data_nt.day == 'D21']
data_nt = data_nt.pivot(index=['guide_id', 'type'], columns='replicate', values='logFC').reset_index('type')
data_nt = data_nt.rename(columns={'R2': 'lfc_r2', 'R3': 'lfc_r3'})
data_nt['lfc_r1'] = np.nan
data_nt = data_nt.loc[data_nt.type == 'NT', LFC_COLS]
data_nt.to_pickle(os.path.join('data-processed', 'junction-nt.bz2'))
# load table containing LFC measurements
data = os.path.join(base_dir, '230411_final_screen_table_essential_genes.txt')
data = pd.read_csv(data, delimiter='\t', low_memory=False)
data = data[data.day == 'D21']
assert set(data['type'].unique()) == {'essential'}
# adjust and rename the features we want to keep from this table
data['guide_seq'] = data['guide_sequence'].apply(lambda seq: seq[::-1])
data['junction_id'] = data['screen_junc_id']
data['junction_olap_5p'] = (data['guide_start'] - data['junc_start']) / data['guide_sequence'].apply(len)
data['junction_olap_3p'] = (data['guide_end'] - data['junc_end']) / data['guide_sequence'].apply(len)
data['perc_gene_nuc'] = data['perc.gene.nuc'].apply(lambda x: x / 100)
data['perc_junc_nuc'] = data['perc.junc.nuc'].apply(lambda x: x / 100)
# pivot and rejoin replicate LFC values
lfc = data[['guide_seq', 'replicate', 'logFC']].set_index('guide_seq')
lfc = lfc.pivot(columns='replicate', values='logFC').rename(columns={'R2': 'lfc_r2', 'R3': 'lfc_r3'})
data['lfc_r1'] = np.nan
assert not lfc.index.has_duplicates
data = data.set_index('guide_seq')
data = data.loc[data.index.duplicated(keep='first')]
data = data.join(lfc)
assert not data.index.has_duplicates
# join additional features
all_junctions = pd.read_pickle(os.path.join('data-processed', 'junction-all.bz2'))
all_junctions.set_index('guide_seq', inplace=True)
assert not all_junctions.index.has_duplicates
data = data[[c for c in data.columns if c in set(COLUMNS_TO_SAVE + JUNCTION_COLS) - set(all_junctions.columns)]]
data = data.join(all_junctions).reset_index()
# drop any rows containing NaNs
data = data.loc[~data[list(set(data.columns) - {'lfc_r1'})].isna().any(axis=1)]
# add junction sequence
junction_sequence = pd.read_csv(os.path.join(base_dir, 'junc_seq.txt'), delimiter='\t', low_memory=False)
junction_sequence.rename(columns={'junc.name': 'junction_id', 'junc.sequence': 'junction_seq'}, inplace=True)
data = data.set_index('junction_id').join(junction_sequence.set_index('junction_id')['junction_seq']).reset_index()
bad_targets = []
for index, row in data.iterrows():
target_seq = row['5p_context'] + row['target_seq'] + row['3p_context']
if target_seq not in row['junction_seq']:
bad_targets += [row['junction_id'] + ': ' + target_seq]
print('Junctions where target + context sequence is not in junction sequence:')
print('\n'.join(bad_targets))
# report missing columns
keep_columns = [col for col in COLUMNS_TO_SAVE if col in data.columns] + JUNCTION_COLS
missing_columns = list(set(COLUMNS_TO_SAVE) - set(keep_columns))
missing_columns.sort()
print('Junction data is missing:', missing_columns)
# add fold assignments and save data
data = fold_assignments(data, num_folds, seed)
data.to_pickle(os.path.join('data-processed', 'junction.bz2'))
def process_splice_site_data(num_folds, seed):
# load junction guide data
data = pd.read_pickle(os.path.join('data-processed', 'junction.bz2'))
# reduce to splice sites
data_splice_site = pd.DataFrame(data[['junction_seq'] + LFC_COLS].groupby('junction_seq')[LFC_COLS].mean())
data_splice_site = data_splice_site.join(data[list(set(data.columns) - set(LFC_COLS))].set_index('junction_seq'))
data_splice_site = data_splice_site.reset_index().drop_duplicates('junction_seq')
data_splice_site['target_seq'] = data_splice_site['junction_seq']
data_splice_site['5p_context'] = ''
data_splice_site['3p_context'] = ''
data_splice_site['guide_seq'] = data_splice_site['junction_seq'].apply(sequence_complement)
data_splice_site['guide_id'] = data_splice_site['guide_seq']
# keep only relevant columns
keep_columns = [col for col in COLUMNS_TO_SAVE if col in data_splice_site.columns and col not in SCALAR_FEATS]
data_splice_site = data_splice_site[keep_columns]
# add fold assignments and save data
data_splice_site = fold_assignments(data_splice_site, num_folds, seed)
data_splice_site.to_pickle(os.path.join('data-processed', 'junction-splice-sites.bz2'))
def process_raw_junction_rbp_data():
rna_prot_dir = os.path.join('data-raw/junction/RNAprot')
# RNA prot junction-level predictions
df_rbp_junc = pd.read_csv(os.path.join(rna_prot_dir, 'output_averaged.csv'))
df_rbp_junc = df_rbp_junc.rename(columns=dict(site_id='junction_id')).set_index('junction_id')
df_rbp_junc.to_pickle(os.path.join('data-processed', 'junction-rbp-junc.bz2'))
# RNA prot junction-level predictions
for (file, suffix) in zip(['all_peak_outputs.csv', 'relaxed_peak_outputs.csv'], ['nt', 'nt_relaxed']):
df_rbp_nt = pd.read_csv(os.path.join(rna_prot_dir, file))
df_rbp_nt = df_rbp_nt.rename(columns=dict(ref_id='junction_id'))
if file == 'all_peak_outputs.csv':
df_rbp_nt['RBP'] = df_rbp_nt['Cell_line'] + '_' + df_rbp_nt['Gene']
elif file == 'relaxed_peak_outputs.csv':
df_rbp_nt.rename(columns=dict(rbp='RBP'), inplace=True)
else:
raise NotImplementedError
df_peak_s = df_rbp_nt.pivot_table(index='junction_id', columns='RBP', values='peak_region_s', fill_value=101)
df_peak_e = df_rbp_nt.pivot_table(index='junction_id', columns='RBP', values='peak_region_e', fill_value=100)
peaks = np.zeros(df_peak_s.shape + (101,), dtype=np.int8)
np.put_along_axis(arr=peaks, indices=df_peak_s.values[..., None].astype(int) - 1, values=1, axis=-1)
np.put_along_axis(arr=peaks, indices=df_peak_e.values[..., None].astype(int), values=-1, axis=-1)
peaks = np.cumsum(peaks, axis=-1)[..., :100]
df_rbp_nt = pd.DataFrame(index=df_peak_s.index, columns=df_peak_s.columns, data=peaks.tolist())
df_rbp_nt.to_pickle(os.path.join('data-processed', 'junction-rbp-' + suffix + '.bz2'))
def process_raw_hap_validation_data():
"""
Process raw junction isoform data and save the processed data as a Pandas DataFrame
:return: None
"""
# hap validation guides
data_file = os.path.join('data-raw', 'hap-validation', 'validation_guides.csv')
df_data = pd.read_csv(data_file)
df_data.rename(columns={'top_sequence': 'guide_seq'}, inplace=True)
# prepare guide/target sequence
df_data['guide_seq'] = df_data['guide_seq'].apply(lambda seq: seq[::-1])
df_data['target_seq'] = df_data['guide_seq'].apply(sequence_complement)
# stuff missing values
df_data['gene'] = 'unknown'
df_data['guide_type'] = 'PM'
df_data[['5p_context', '3p_context']] = ''
# finalize data
keep_columns = [col for col in COLUMNS_TO_SAVE if col in df_data.columns]
missing_columns = list(set(COLUMNS_TO_SAVE) - set(keep_columns))
missing_columns.sort()
print('hap=validation', 'data is missing:', missing_columns)
df_data = df_data[keep_columns]
# save data
df_data.to_pickle(os.path.join('data-processed', 'hap-validation.bz2'))
def load_transcripts(df_transcripts, transcript_dir, file_type):
"""
Load transcript sequence for each gene in the provided transcript table
:param df_transcripts: DataFrame with transcript IDs that point to transcript files
:param transcript_dir: directory containing transcript files
:param file_type: FASTA file type postfix (e.g. .fasta or .fa)
:return: df_transcripts with gene sequences loaded into additional column
"""
df_transcripts['target_seq'] = None
for index, row in df_transcripts.iterrows():
with open(os.path.join(transcript_dir, row['transcript_id'] + file_type), 'r') as file:
seq_records = [s for s in SeqIO.parse(file, 'fasta')]
assert len(seq_records) == 1
target_seq = str(seq_records[0].seq)
assert len(target_seq) == row['length']
df_transcripts.loc[index, 'target_seq'] = target_seq
return df_transcripts
def fold_assignments(df_data, num_folds, seed):
# set random number seed
np.random.seed(seed)
# guide folds
df_data['guide_fold'] = 1 + np.random.choice(num_folds, len(df_data))
# target folds
df_pm = df_data[df_data.guide_type == 'PM'][['target_seq']]
df_pm['target_fold'] = 1 + np.random.choice(num_folds, len(df_pm))
df_data = pd.merge(df_data, df_pm, how='inner', on='target_seq')
return df_data
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='all', help='which dataset to process')
parser.add_argument('--num_folds', type=int, default=10, help='number of folds')
parser.add_argument('--seed', type=int, default=112358, help='random number seed for fold assignments')
args = parser.parse_args()
# make sure output directory exists
os.makedirs('data-processed', exist_ok=True)
# prepare requested data sources
if args.dataset == 'all' or args.dataset == 'flow-cytometry':
process_raw_wessels_data('flow-cytometry', args.num_folds, args.seed)
if args.dataset == 'all' or args.dataset == 'off-target':
process_raw_wessels_data('off-target', args.num_folds, args.seed)
if args.dataset == 'all' or args.dataset == 'hap-titration':
process_hap_titration_data(args.num_folds, args.seed)
if args.dataset == 'all' or args.dataset == 'junction':
process_all_junctions()
process_qpcr_junction_data()
process_raw_junction_data(args.num_folds, args.seed)
process_splice_site_data(args.num_folds, args.seed)
# process_raw_junction_rbp_data()
# if args.dataset == 'all' or args.dataset == 'hap-validation':
# process_raw_hap_validation_data()