-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_Caps2NE_ind.py
232 lines (194 loc) · 9.63 KB
/
train_Caps2NE_ind.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#! /usr/bin/env python
import tensorflow as tf
import numpy as np
import os
import time
import datetime
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from capsNet2 import Caps2NE
import pickle as cPickle
from utils import *
np.random.seed(1234)
tf.set_random_seed(1234)
# Parameters
# ==================================================
parser = ArgumentParser("Caps2NE", formatter_class=ArgumentDefaultsHelpFormatter, conflict_handler='resolve')
parser.add_argument("--data", default="./graph/", help="Data sources.")
parser.add_argument("--run_folder", default="../", help="Data sources.")
parser.add_argument("--nameInd", default="cora.128.10.ind1.pickle", help="Name of the dataset.")
parser.add_argument("--nameTrans", default="cora.128.10.trans.pickle", help="Name of the dataset.")
parser.add_argument("--embedding_dim", default=8, type=int, help="Dimensionality of character embedding")
parser.add_argument("--learning_rate", default=0.0001, type=float, help="Learning rate")
parser.add_argument("--batch_size", default=8, type=int, help="Batch Size")
parser.add_argument("--idx_time", default=1, type=int, help="")
parser.add_argument("--num_epochs", default=50, type=int, help="Number of training epochs")
parser.add_argument("--saveStep", default=1, type=int, help="")
parser.add_argument("--allow_soft_placement", default=True, type=bool, help="Allow device soft device placement")
parser.add_argument("--log_device_placement", default=False, type=bool, help="Log placement of ops on devices")
parser.add_argument("--model_name", default='cora_trans', help="")
parser.add_argument("--useInductive", action='store_true')
parser.add_argument('--num_sampled', default=256, type=int, help='')
parser.add_argument('--iter_routing', default=5, type=int, help='number of iterations in routing algorithm')
parser.add_argument('--num_outputs_secondCapsLayer', default=1, type=int, help='')
parser.add_argument("--is_trainable", default=False, type=bool, help="")
parser.add_argument("--write_file", default='cora', help="")
args = parser.parse_args()
print(args)
class Batch_Loader_RW(object):
def __init__(self, walks, batch_size=10):
self.lstArr = range(10) # depends on the average number of edges per node, for POS PPI BlogCatalog
if str(args.nameInd).split('.')[0] in ['cora', 'citeseer', 'pubmed']:
self.lstArr = [3, 4, 5, 6] # just ~ 2 edges per node
self.walks = walks
self.batch_size = batch_size
self.data_size = len(self.walks)
self.sequence_length = np.shape(self.walks)[1]
self.check()
def __call__(self):
idxs = np.random.randint(0, self.data_size, self.batch_size)
return self.generatedata(self.walks[idxs])
def generatedata(self, _input):
arrX = []
arrY = []
for tmp in _input:
for i in self.lstArr:
arrX.append([tmp[j] for j in range(0, self.sequence_length) if j != i])
arrY.append([tmp[i]])
return np.array(arrX), np.array(arrY)
def check(self):
_dict = set()
for walk in self.walks:
for tmp in walk:
if tmp not in _dict:
_dict.add(int(tmp))
self._dict = _dict
# Load data
print("Loading data...")
with open(args.data + args.nameInd, 'rb') as f:
walksInd = cPickle.load(f)
batch_rw = Batch_Loader_RW(walksInd, args.batch_size)
with open(args.data + args.nameTrans, 'rb') as f:
walksTrans = cPickle.load(f)
tmpdata = open(str(args.nameInd).split('.')[0] + '.10sampledtimes', 'rb')
for idx in range(args.idx_time):
idx_train, train_labels, idx_val, val_labels, idx_test, test_labels = cPickle.load(tmpdata)
# for only cora, pubmed, citeseer
features, _ = load_data(str(args.nameInd).split('.')[0])
features_matrix, spars = preprocess_features(features)
features_matrix = np.array(features_matrix, dtype=np.float32)
vec_len_firstCapsLayer = features_matrix.shape[1]
vocab_size = features_matrix.shape[0]
# take a test node as a target node, others as context nodes for predicting the embedding of the target node in the test set
# this is a simple way to report results in the paper. Will try to find another way to improve the results.
totalT = []
totalC = []
for k in range(10):
predictT = []
predictC = []
lstInd = set()
for tmp in walksTrans:
if tmp[k] in set(idx_test):
if tmp[k] not in lstInd: ################
remainList = [tmp[i] for i in range(len(tmp)) if i != k]
predictT.append([tmp[k]])
predictC.append([tmp[i] for i in range(len(tmp)) if i != k])
lstInd.add(tmp[k])
print(len(predictT), len(batch_rw.lstArr) * args.batch_size) # 1000
# for running a batch
while len(predictT) % (len(batch_rw.lstArr) * args.batch_size) != 0:
predictT.append(predictT[-1])
predictC.append(predictC[-1])
predictT = np.array(predictT)
predictC = np.array(predictC)
totalT.append(predictT)
totalC.append(predictC)
print("Loading data... finished!")
# Training
# ==================================================
with tf.Graph().as_default():
session_conf = tf.ConfigProto(allow_soft_placement=args.allow_soft_placement,
log_device_placement=args.log_device_placement)
session_conf.gpu_options.allow_growth = True
sess = tf.Session(config=session_conf)
with sess.as_default():
global_step = tf.Variable(0, name="global_step", trainable=False)
capsNet = Caps2NE(sequence_length=batch_rw.sequence_length - 1,
embedding_size=args.embedding_dim,
vocab_size=vocab_size,
iter_routing=args.iter_routing,
batch_size=len(batch_rw.lstArr) * args.batch_size,
num_sampled=args.num_sampled,
initialization=features_matrix,
vec_len_firstCapsLayer=vec_len_firstCapsLayer
)
# Define Training procedure
# optimizer = tf.contrib.opt.NadamOptimizer(1e-3)
optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
# optimizer = tf.train.RMSPropOptimizer(learning_rate=args.learning_rate)
# optimizer = tf.train.GradientDescentOptimizer(learning_rate=args.learning_rate)
grads_and_vars = optimizer.compute_gradients(capsNet.total_loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
out_dir = os.path.abspath(os.path.join(args.run_folder, "runs_Caps2NE_ind", args.model_name))
print("Writing to {}\n".format(out_dir))
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
# Initialize all variables
sess.run(tf.global_variables_initializer())
graph = tf.get_default_graph()
def train_step(x_batch, y_batch):
"""
A single training step
"""
feed_dict = {
capsNet.input_x: x_batch,
capsNet.input_y: y_batch
}
_, step, loss = sess.run([train_op, global_step, capsNet.total_loss], feed_dict)
return loss
def getEmbedding(x_batch, y_batch):
"""
A single training step
"""
feed_dict = {
capsNet.input_x: x_batch,
capsNet.input_y: y_batch
}
step, caps2reshape = sess.run([global_step, capsNet.caps2reshape], feed_dict)
return caps2reshape
num_batches_per_epoch = int((batch_rw.data_size - 1) / args.batch_size) + 1
for epoch in range(1,args.num_epochs+1):
loss = 0
for batch_num in range(num_batches_per_epoch):
x_batch, y_batch = batch_rw()
loss += train_step(x_batch, y_batch)
current_step = tf.train.global_step(sess, global_step)
# print(loss)
if epoch % args.saveStep == 0:
embeddingW_value = sess.run(capsNet.embedding_matrix)
totalEmbed = {}
for m in range(len(totalT)):
predictT = totalT[m]
predictC = totalC[m]
tmpEmbedded = []
tmpIdx = range(0, len(predictC) + 1, (len(batch_rw.lstArr) * args.batch_size))
for i in range(len(tmpIdx) - 1):
tmpEmbedded.append(
getEmbedding(predictC[tmpIdx[i]:tmpIdx[i + 1]], predictT[tmpIdx[i]:tmpIdx[i + 1]]))
tmpEmbedded = np.concatenate(tmpEmbedded, axis=0)[:1000]
listIdxes = np.reshape(predictT[:1000], 1000)
for i in range(len(listIdxes)):
if listIdxes[i] not in totalEmbed:
totalEmbed[listIdxes[i]] = []
totalEmbed[listIdxes[i]].append(tmpEmbedded[i])
for m in totalEmbed:
tmpM = np.sum(totalEmbed[m], axis=0)
totalEmbed[m] = tmpM
listIdxes = list(totalEmbed.keys())
tmpEmbedded = list(totalEmbed.values())
embeddingW_value[listIdxes] = tmpEmbedded
with open(checkpoint_prefix + '-' + str(epoch), 'wb') as f:
cPickle.dump(embeddingW_value, f)
print("Save embeddings to {}\n".format(checkpoint_prefix + '-' + str(epoch)))