-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feature: Add 'orderedset' data structure implementation
- Loading branch information
Showing
1 changed file
with
378 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,378 @@ | ||
local VERBOSE = false | ||
local function log(...) | ||
if VERBOSE then print('[INFO]',...) end | ||
end | ||
|
||
--[[ | ||
This is an implementation of a set that maintains an <= ordering between its items | ||
by way of a self-balancing binary search (AVL) tree. | ||
It's important to keep in mind the invariants of an AVL tree when reasoning | ||
about the behavior: | ||
- Each node has at most two subtrees | ||
- Each node is valued greater than all nodes in its "left" subtree, and lesser | ||
than all nodes in its "right" subtree | ||
- Trees are traversed from "left" to "right" and thus in ascending order of value | ||
- Each node is ranked according to its height in the tree | ||
- Subtrees never rank higher than the root | ||
- Subtrees with the same immediate root never differ in rank by more than 1 | ||
]] | ||
|
||
local tree = {} | ||
|
||
--[[ | ||
The height of a node is the length of the longest path downward from that node | ||
to a leaf. Thus, the height of the root node is the height of the tree, and the | ||
height of a leaf is zero. | ||
Conventionally, an empty tree has a height of -1. | ||
]] | ||
local BASE_HEIGHT = -1 | ||
local function _leaf(item) | ||
log('(_leaf)', item) | ||
return setmetatable( | ||
{ | ||
value = item, | ||
__height = BASE_HEIGHT + 1, | ||
__left = nil, | ||
__right = nil, | ||
}, | ||
{ __index = tree }) | ||
end | ||
|
||
local function _get_height_safely(node) | ||
return node and node.__height or BASE_HEIGHT | ||
end | ||
|
||
-- The proper height of a node is 1 greater than the height of its largest subtree. | ||
local function _compute_proper_height(node) | ||
return 1 + | ||
math.max( | ||
_get_height_safely(node.__left), | ||
_get_height_safely(node.__right) | ||
) | ||
end | ||
|
||
-- The balance factor will be in {-1, 0, 1} when the tree is balanced. | ||
-- Otherwise, it will be negative when the left side is too tall, and positive | ||
-- when the right side is too tall. | ||
local function _balance_factor(node) | ||
local left_height = _get_height_safely(node.__left) | ||
local right_height = _get_height_safely(node.__right) | ||
|
||
return (right_height - left_height) | ||
end | ||
|
||
--[[ NOTE(dabrady) | ||
Balancing a binary tree changes the structure without interfering with the | ||
ordering of its nodes. | ||
We use this behavior in particular to ensure our tree is compact in terms of | ||
height. Without this property, our set would technically still be ordered, but | ||
manipulating it would grow less performant in direct proportion to its size. | ||
]] | ||
local function _balance(root_node) | ||
log('(_balance)', root_node) | ||
if not root_node then | ||
print('\t(early return: nil)') | ||
return nil | ||
end | ||
|
||
--[[ | ||
A single tree rotation is a constant-time operation that essentially | ||
brings one node 'up' and pushes one node 'down'. | ||
Excellent resources on tree rotation algorithms: | ||
@see https://en.wikipedia.org/wiki/Tree_rotation | ||
@see https://www.cs.swarthmore.edu/~brody/cs35/f14/Labs/extras/08/avl_pseudo.pdf | ||
]] | ||
local function __rotate(root_node, rotation_side, opposite_side) | ||
log('\t(__rotate)', rotation_side) | ||
--[[ | ||
Rotation is an operation that takes a node and its two subnodes, and | ||
changes their relationship such that the original node becomes a subnode of | ||
one of the others, and the other becomes a 'supernode' to the original. | ||
(One of the sub-subtrees becomes orphaned in this process, and is reassigned | ||
to maintain the tree invariants.) | ||
The subnode in the direction of the rotation is the node that is 'lowered', | ||
and thus its opposite is the node that gets 'promoted'. | ||
(d) | ||
/ \ | ||
(b) (e) (b) | ||
/ \ right / \ | ||
(a) (c) rotate (a) (d) | ||
-----> / \ | ||
(c) (e) | ||
]] | ||
local pivot_node = root_node[opposite_side] | ||
root_node[opposite_side] = pivot_node[rotation_side] | ||
pivot_node[rotation_side] = root_node | ||
|
||
root_node.__height = _compute_proper_height(root_node) | ||
pivot_node.__height = _compute_proper_height(pivot_node) | ||
|
||
return pivot_node | ||
end | ||
|
||
local function __rotate_left(node) | ||
return __rotate(node, "__left", "__right") | ||
end | ||
|
||
local function __rotate_right(node) | ||
return __rotate(node, "__right", "__left") | ||
end | ||
|
||
root_node.__height = _compute_proper_height(root_node) | ||
|
||
-- NOTE(dabrady) If the balance factor of the root is in violation, the tree is | ||
-- unbalanced and needs restructuring. | ||
local balance_factor = _balance_factor(root_node) | ||
if balance_factor < -1 then | ||
-- The left side is too tall, so lower it. | ||
log('\tleft side too tall') | ||
|
||
-- When the "inside edge" of a subtree is longer than the "outside edge", we | ||
-- actually need to make a double-rotation to properly rebalance. | ||
local left_balance = _balance_factor(root_node.__left) | ||
if left_balance > 0 then | ||
log('\tinside edge too tall') | ||
root_node.__left = __rotate_left(root_node.__left) | ||
end | ||
|
||
return __rotate_right(root_node) | ||
elseif balance_factor > 1 then | ||
log('\tright side too tall') | ||
-- The right side is too tall, so lower it. | ||
|
||
local right_balance = _balance_factor(root_node.__right) | ||
if right_balance < 0 then | ||
log('\tinside edge too tall') | ||
root_node.__right = __rotate_right(root_node.__right) | ||
end | ||
|
||
return __rotate_left(root_node) | ||
end | ||
|
||
-- We've determined the tree is balanced, so give it back. | ||
log('(_balance) balanced root:', root_node) | ||
return root_node | ||
end | ||
|
||
function tree:add(item) | ||
log('(tree.add)', item) | ||
|
||
if not self or not self.value then | ||
-- Our base case: we've reached the end of a branch, and must grow a new leaf. | ||
log('\tgrowing new leaf for '..item) | ||
return _leaf(item) | ||
end | ||
|
||
if item < self.value then | ||
log('\tgoing left from '..self.value) | ||
-- Go left. | ||
self.__left = tree.add(self.__left, item) | ||
elseif item > self.value then | ||
log('\tgoing right from '..self.value) | ||
-- Go right. | ||
self.__right = tree.add(self.__right, item) | ||
else | ||
-- Do nothing, item already represented by the this node. | ||
end | ||
|
||
-- Rebalance and return this node. | ||
return _balance(self) | ||
end | ||
|
||
function tree:remove(item) | ||
if not self then | ||
return nil | ||
end | ||
|
||
-- Found it, time to do some switchery. | ||
if item == self.value then | ||
--[[ | ||
If it only has one subtree, just straight up replace it with that subtree; | ||
no need to do anything fancy in this case. E.g. | ||
(b) (b) | ||
/ \ remove (d) / \ | ||
(a) (d) ---------> (a) (c) | ||
/ | ||
(c) | ||
]] | ||
if not ( self.__left and self.__right ) then | ||
return self.__left or self.__right | ||
end | ||
|
||
--[[ | ||
If this node is load-bearing (i.e. has both subtrees), we need to do some | ||
more complex transplanting to maintain our order invariant. | ||
What should happen here? | ||
(b) | ||
/ \ remove (b) ???? | ||
(a) (d) ---------> | ||
/ \ | ||
(c) (e) | ||
One approach, which I will use here, is to simply replace the node-to-remove | ||
with the "next" node in the tree (relative to the order invariant). | ||
(b) (c) | ||
/ \ remove (b) / \ | ||
(a) (d) ---------> (a) (d) | ||
/ \ \ | ||
(c) (e) (e) | ||
Such an action is a bit tricky when the "next" node has a subtree (it will | ||
have either zero or one, by definition of "next") because we have to decide | ||
where to put that subtree. But this is solved by considering a "node | ||
replacement" to be a copy-remove-rebalance action, in which case we have a | ||
simple case of recursion. | ||
(c) (d) | ||
/ \ remove (c) / \ | ||
(b) (f) ---------> (b) (f) | ||
/ / \ / / \ | ||
(a) (d) (g) (a) (e) (g) | ||
\ | ||
(e) | ||
]] | ||
|
||
-- The "next" node is always the bottom-left node of the right side of the tree. | ||
local next_node = self.__right | ||
while next_node do | ||
next_node = next_node.__left | ||
end | ||
|
||
-- Change the world. | ||
local new_self = tree.remove(self, next_node.value) | ||
-- Forget the old one. | ||
new_self.value = next_node.value | ||
return new_self | ||
end | ||
|
||
-- Walk the tree until we find the item, then remove it or die trying. | ||
if item < self.value then | ||
self.__left = tree.remove(self.__left, item) | ||
elseif item > self.value then | ||
self.__right = tree.remove(self.__right, item) | ||
end | ||
|
||
-- Rebalance and return this node. | ||
return _balance(self) | ||
end | ||
|
||
----- | ||
|
||
local orderedset = {} | ||
local function _make_set() | ||
log('(_make_set)') | ||
return setmetatable( | ||
{}, | ||
{ | ||
root = nil, | ||
size = 0, -- the number of items in our ordered set | ||
__len = function(t) return getmetatable(t).size end, | ||
} | ||
) | ||
end | ||
|
||
function orderedset.from(list) | ||
log('(orderedset.from)', list) | ||
local set = _make_set() | ||
|
||
if list then | ||
assert(type(list) == "table") | ||
for _,item in ipairs(list) do | ||
log('\tadding', item) | ||
orderedset.add(set, item) | ||
end | ||
end | ||
|
||
return set | ||
end | ||
|
||
function orderedset.add(set, item) | ||
log('(orderedset.add)', item) | ||
if not set then | ||
error('need a set to add to') | ||
end | ||
|
||
if not item then | ||
-- Don't allow nodes without value. | ||
return nil | ||
end | ||
|
||
local meta = getmetatable(set) | ||
if not meta.root then | ||
-- The tree is empty, so return a new root. | ||
log('\t(empty tree)') | ||
meta.root = _leaf(item) | ||
else | ||
log('\t(non-empty tree)') | ||
meta.root = meta.root:add(item) | ||
end | ||
|
||
-- Keep a table indexed by the items for performant lookups | ||
if not set[item] then | ||
set[item] = true | ||
meta.size = meta.size + 1 | ||
end | ||
|
||
return item | ||
end | ||
|
||
function orderedset.remove(set, item) | ||
log('(orderedset.remove)', item) | ||
if not set then | ||
error('need a set to remove from') | ||
end | ||
|
||
if not item then | ||
return nil | ||
end | ||
|
||
local meta = getmetatable(set) | ||
meta.root = meta.root and meta.root:remove(item) | ||
|
||
-- Keep a table indexed by the items for performant lookups | ||
if set[item] then | ||
set[item] = nil | ||
meta.size = meta.size - 1 | ||
end | ||
|
||
return nil | ||
end | ||
|
||
function orderedset.iterate(set) | ||
log('(orderedset.iterate)') | ||
if not set then | ||
error('need a set to iterate over') | ||
end | ||
|
||
local function __traverse(node) | ||
if not node then | ||
return nil | ||
end | ||
|
||
__traverse(node.__left) | ||
coroutine.yield(node.value) | ||
__traverse(node.__right) | ||
end | ||
|
||
return coroutine.wrap(function() | ||
__traverse(getmetatable(set).root) | ||
end) | ||
end | ||
|
||
return setmetatable( | ||
orderedset, | ||
{ | ||
__call = function(_, ...) return orderedset.from(...) end | ||
} | ||
) |