Skip to content

Commit

Permalink
feature: Add 'orderedset' data structure implementation
Browse files Browse the repository at this point in the history
  • Loading branch information
dabrady committed Sep 22, 2020
1 parent 54ca448 commit b206b0b
Showing 1 changed file with 378 additions and 0 deletions.
378 changes: 378 additions & 0 deletions orderedset.lua
Original file line number Diff line number Diff line change
@@ -0,0 +1,378 @@
local VERBOSE = false
local function log(...)
if VERBOSE then print('[INFO]',...) end
end

--[[
This is an implementation of a set that maintains an <= ordering between its items
by way of a self-balancing binary search (AVL) tree.
It's important to keep in mind the invariants of an AVL tree when reasoning
about the behavior:
- Each node has at most two subtrees
- Each node is valued greater than all nodes in its "left" subtree, and lesser
than all nodes in its "right" subtree
- Trees are traversed from "left" to "right" and thus in ascending order of value
- Each node is ranked according to its height in the tree
- Subtrees never rank higher than the root
- Subtrees with the same immediate root never differ in rank by more than 1
]]

local tree = {}

--[[
The height of a node is the length of the longest path downward from that node
to a leaf. Thus, the height of the root node is the height of the tree, and the
height of a leaf is zero.
Conventionally, an empty tree has a height of -1.
]]
local BASE_HEIGHT = -1
local function _leaf(item)
log('(_leaf)', item)
return setmetatable(
{
value = item,
__height = BASE_HEIGHT + 1,
__left = nil,
__right = nil,
},
{ __index = tree })
end

local function _get_height_safely(node)
return node and node.__height or BASE_HEIGHT
end

-- The proper height of a node is 1 greater than the height of its largest subtree.
local function _compute_proper_height(node)
return 1 +
math.max(
_get_height_safely(node.__left),
_get_height_safely(node.__right)
)
end

-- The balance factor will be in {-1, 0, 1} when the tree is balanced.
-- Otherwise, it will be negative when the left side is too tall, and positive
-- when the right side is too tall.
local function _balance_factor(node)
local left_height = _get_height_safely(node.__left)
local right_height = _get_height_safely(node.__right)

return (right_height - left_height)
end

--[[ NOTE(dabrady)
Balancing a binary tree changes the structure without interfering with the
ordering of its nodes.
We use this behavior in particular to ensure our tree is compact in terms of
height. Without this property, our set would technically still be ordered, but
manipulating it would grow less performant in direct proportion to its size.
]]
local function _balance(root_node)
log('(_balance)', root_node)
if not root_node then
print('\t(early return: nil)')
return nil
end

--[[
A single tree rotation is a constant-time operation that essentially
brings one node 'up' and pushes one node 'down'.
Excellent resources on tree rotation algorithms:
@see https://en.wikipedia.org/wiki/Tree_rotation
@see https://www.cs.swarthmore.edu/~brody/cs35/f14/Labs/extras/08/avl_pseudo.pdf
]]
local function __rotate(root_node, rotation_side, opposite_side)
log('\t(__rotate)', rotation_side)
--[[
Rotation is an operation that takes a node and its two subnodes, and
changes their relationship such that the original node becomes a subnode of
one of the others, and the other becomes a 'supernode' to the original.
(One of the sub-subtrees becomes orphaned in this process, and is reassigned
to maintain the tree invariants.)
The subnode in the direction of the rotation is the node that is 'lowered',
and thus its opposite is the node that gets 'promoted'.
(d)
/ \
(b) (e) (b)
/ \ right / \
(a) (c) rotate (a) (d)
-----> / \
(c) (e)
]]
local pivot_node = root_node[opposite_side]
root_node[opposite_side] = pivot_node[rotation_side]
pivot_node[rotation_side] = root_node

root_node.__height = _compute_proper_height(root_node)
pivot_node.__height = _compute_proper_height(pivot_node)

return pivot_node
end

local function __rotate_left(node)
return __rotate(node, "__left", "__right")
end

local function __rotate_right(node)
return __rotate(node, "__right", "__left")
end

root_node.__height = _compute_proper_height(root_node)

-- NOTE(dabrady) If the balance factor of the root is in violation, the tree is
-- unbalanced and needs restructuring.
local balance_factor = _balance_factor(root_node)
if balance_factor < -1 then
-- The left side is too tall, so lower it.
log('\tleft side too tall')

-- When the "inside edge" of a subtree is longer than the "outside edge", we
-- actually need to make a double-rotation to properly rebalance.
local left_balance = _balance_factor(root_node.__left)
if left_balance > 0 then
log('\tinside edge too tall')
root_node.__left = __rotate_left(root_node.__left)
end

return __rotate_right(root_node)
elseif balance_factor > 1 then
log('\tright side too tall')
-- The right side is too tall, so lower it.

local right_balance = _balance_factor(root_node.__right)
if right_balance < 0 then
log('\tinside edge too tall')
root_node.__right = __rotate_right(root_node.__right)
end

return __rotate_left(root_node)
end

-- We've determined the tree is balanced, so give it back.
log('(_balance) balanced root:', root_node)
return root_node
end

function tree:add(item)
log('(tree.add)', item)

if not self or not self.value then
-- Our base case: we've reached the end of a branch, and must grow a new leaf.
log('\tgrowing new leaf for '..item)
return _leaf(item)
end

if item < self.value then
log('\tgoing left from '..self.value)
-- Go left.
self.__left = tree.add(self.__left, item)
elseif item > self.value then
log('\tgoing right from '..self.value)
-- Go right.
self.__right = tree.add(self.__right, item)
else
-- Do nothing, item already represented by the this node.
end

-- Rebalance and return this node.
return _balance(self)
end

function tree:remove(item)
if not self then
return nil
end

-- Found it, time to do some switchery.
if item == self.value then
--[[
If it only has one subtree, just straight up replace it with that subtree;
no need to do anything fancy in this case. E.g.
(b) (b)
/ \ remove (d) / \
(a) (d) ---------> (a) (c)
/
(c)
]]
if not ( self.__left and self.__right ) then
return self.__left or self.__right
end

--[[
If this node is load-bearing (i.e. has both subtrees), we need to do some
more complex transplanting to maintain our order invariant.
What should happen here?
(b)
/ \ remove (b) ????
(a) (d) --------->
/ \
(c) (e)
One approach, which I will use here, is to simply replace the node-to-remove
with the "next" node in the tree (relative to the order invariant).
(b) (c)
/ \ remove (b) / \
(a) (d) ---------> (a) (d)
/ \ \
(c) (e) (e)
Such an action is a bit tricky when the "next" node has a subtree (it will
have either zero or one, by definition of "next") because we have to decide
where to put that subtree. But this is solved by considering a "node
replacement" to be a copy-remove-rebalance action, in which case we have a
simple case of recursion.
(c) (d)
/ \ remove (c) / \
(b) (f) ---------> (b) (f)
/ / \ / / \
(a) (d) (g) (a) (e) (g)
\
(e)
]]

-- The "next" node is always the bottom-left node of the right side of the tree.
local next_node = self.__right
while next_node do
next_node = next_node.__left
end

-- Change the world.
local new_self = tree.remove(self, next_node.value)
-- Forget the old one.
new_self.value = next_node.value
return new_self
end

-- Walk the tree until we find the item, then remove it or die trying.
if item < self.value then
self.__left = tree.remove(self.__left, item)
elseif item > self.value then
self.__right = tree.remove(self.__right, item)
end

-- Rebalance and return this node.
return _balance(self)
end

-----

local orderedset = {}
local function _make_set()
log('(_make_set)')
return setmetatable(
{},
{
root = nil,
size = 0, -- the number of items in our ordered set
__len = function(t) return getmetatable(t).size end,
}
)
end

function orderedset.from(list)
log('(orderedset.from)', list)
local set = _make_set()

if list then
assert(type(list) == "table")
for _,item in ipairs(list) do
log('\tadding', item)
orderedset.add(set, item)
end
end

return set
end

function orderedset.add(set, item)
log('(orderedset.add)', item)
if not set then
error('need a set to add to')
end

if not item then
-- Don't allow nodes without value.
return nil
end

local meta = getmetatable(set)
if not meta.root then
-- The tree is empty, so return a new root.
log('\t(empty tree)')
meta.root = _leaf(item)
else
log('\t(non-empty tree)')
meta.root = meta.root:add(item)
end

-- Keep a table indexed by the items for performant lookups
if not set[item] then
set[item] = true
meta.size = meta.size + 1
end

return item
end

function orderedset.remove(set, item)
log('(orderedset.remove)', item)
if not set then
error('need a set to remove from')
end

if not item then
return nil
end

local meta = getmetatable(set)
meta.root = meta.root and meta.root:remove(item)

-- Keep a table indexed by the items for performant lookups
if set[item] then
set[item] = nil
meta.size = meta.size - 1
end

return nil
end

function orderedset.iterate(set)
log('(orderedset.iterate)')
if not set then
error('need a set to iterate over')
end

local function __traverse(node)
if not node then
return nil
end

__traverse(node.__left)
coroutine.yield(node.value)
__traverse(node.__right)
end

return coroutine.wrap(function()
__traverse(getmetatable(set).root)
end)
end

return setmetatable(
orderedset,
{
__call = function(_, ...) return orderedset.from(...) end
}
)

0 comments on commit b206b0b

Please sign in to comment.