-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_net.prototxt
executable file
·109 lines (108 loc) · 2.22 KB
/
train_net.prototxt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
layer{
name: "input"
type: "Data"
# note - this is I guess just a convention that the top layers are "data and label"
top: "data"
top: "label"
include {
phase: TRAIN
}
# batching, 100 for now
data_param{
source: "/work/04035/dnelson8/maverick/vr_project/dataset/lmdb/1/train"
batch_size: 100
backend: LMDB
}
}
layer{
name: "input"
type: "Data"
# note - this is I guess just a convention that the top layers are "data and label"
top: "data"
top: "label"
include {
phase: TEST
}
# batching, 100 for now
data_param{
source: "/work/04035/dnelson8/maverick/vr_project/dataset/lmdb/1/test"
batch_size: 100
backend: LMDB
}
}
# input(10 * 1 * 150 * 4096)
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
# num_output = number of filters
num_output: 400
kernel_h: 7
kernel_w: 4096
stride_h: 1
stride_w: 1
weight_filler {
type: "gaussian"
std: 0.02
}
bias_filler {
type: "gaussian"
std: 0.001
}
}
}
# output(n_batch * num_output * 300 - num_output * 1)
# presently(10 * 400 * 143 * 1)
# in this layer, set kernel_h = 300 - [conv1]num_output
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_h: 143
kernel_w: 1
stride: 1
}
}
# output: (n_batch * num_output * 1 * 1)
# presently: (10 * 400 * 1 * 1)
layer {
name: "fc1"
type: "InnerProduct"
bottom: "pool1"
top: "fc1"
inner_product_param {
num_output: 101
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
# output: (n_batch * num_output * 1 * 1)
# presently: (10 * 400 * 1 * 1)
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc1"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "softmax"
type: "SoftmaxWithLoss"
bottom: "fc1"
bottom: "label"
top: "softmax"
}