-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_target_graph.py
154 lines (124 loc) · 6.24 KB
/
train_target_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
import os
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from model import *
from utils import *
from layer import *
from datasets import *
import numpy as np
import random
from torch.utils.data import random_split
from torch_geometric.loader import DataLoader
from torch_geometric.datasets import TUDataset
from torch_geometric.transforms import Constant
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=2024, help='random seed')
parser.add_argument('--batch_size', type=int, default=2000, help='batch size')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--weight_decay', type=float, default=0.001, help='weight decay')
parser.add_argument('--nhid', type=int, default=64, help='hidden size')
parser.add_argument('--dropout_ratio', type=float, default=0.1, help='dropout ratio')
parser.add_argument('--device', type=str, default='cuda:2', help='specify cuda devices')
parser.add_argument('--target', type=str, default='Mutagenicity_M4', help='target domain data')
parser.add_argument('--epochs', type=int, default=200, help='maximum number of epochs')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--num_layers', type=int, default=3, help='number of gnn layers')
parser.add_argument('--gnn', type=str, default='gcn', help='different types of gnns')
parser.add_argument('--use_bn', type=bool, default=False, help='do not use batchnorm')
parser.add_argument('--K', type=int, default=40, help='number of nearest neighbors')
args = parser.parse_args()
if args.target in {'PROTEINS_P4'}:
path = osp.join(osp.dirname(osp.realpath(__file__)), '.', 'data/PROTEINS', args.target)
target_dataset = GraphTUDataset(path, args.target)
names = ['PROTEINS_P1', 'PROTEINS_P2', 'PROTEINS_P3']
elif args.target in {'Mutagenicity_M4'}:
path = osp.join(osp.dirname(osp.realpath(__file__)), '.', 'data/Mutagenicity', args.target)
target_dataset = GraphTUDataset(path, args.target)
names = ['Mutagenicity_M1', 'Mutagenicity_M2', 'Mutagenicity_M3']
elif args.target in {'FRANKENSTEIN_F4'}:
path = osp.join(osp.dirname(osp.realpath(__file__)), '.', 'data/FRANKENSTEIN', args.target)
target_dataset = GraphTUDataset(path, args.target)
names = ['FRANKENSTEIN_F1', 'FRANKENSTEIN_F2', 'FRANKENSTEIN_F3']
args.num_classes = target_dataset.num_classes
args.num_features = target_dataset.num_features
args.num_graphs = len(target_dataset)
src = []
for name in names:
if name == args.target:
continue
src.append(name)
args.src = src
print(args)
# Load pre-trained model from source domain
model_list = []
param_group = []
for i in range(len(src)):
model = GraphClassificationModel(args).to(args.device)
model.load_state_dict(torch.load('pretrain/model_' + src[i] + '.pth'))
model_list.append(model)
param_group += list(model.parameters())
weight_list = []
for model in model_list:
w_list = []
for name, param in model.gnn.named_parameters():
if name[-10:] == 'lin.weight':
w_list.append(param)
weight_list.append(w_list)
weight_listv2 = list(zip(*weight_list))
model = GraphATAGraph(args, weight_listv2, model_list).to(args.device)
param_group += list(model.parameters())
optimizer_t = torch.optim.Adam(param_group, lr=args.lr, weight_decay=args.weight_decay)
loader = DataLoader(target_dataset, batch_size=args.batch_size, shuffle=False)
def train_target():
t = time.time()
mem_fea = torch.rand(len(target_dataset), args.nhid).to(args.device)
mem_cls = torch.ones(len(target_dataset), args.num_classes).to(args.device) / args.num_classes
for epoch in range(args.epochs):
for i, data in enumerate(loader):
optimizer_t.zero_grad()
data = data.to(args.device)
feat_output = model.feat_bottleneck(data.x, data.edge_index, data.batch)
cls_output = model.feat_classifier(feat_output)
softmax_out = F.softmax(cls_output, dim=1)
entropy_loss = torch.mean(Entropy(softmax_out))
mean_softmax = softmax_out.mean(dim=0)
div_loss = torch.sum(mean_softmax * torch.log(mean_softmax + 1e-5))
im_loss = entropy_loss + div_loss
feat_norm = F.normalize(feat_output, dim=1)
mem_fea_norm = F.normalize(mem_fea, dim=1)
distance = feat_norm @ mem_fea_norm.T
_, idx_near = torch.topk(distance, dim=-1, largest=True, k=args.K + 1)
idx_near = idx_near[:, 1:]
pred_near = torch.mean(mem_cls[idx_near], dim=1)
_, preds = torch.max(pred_near, dim=1)
cls_loss = F.cross_entropy(cls_output, preds)
loss = im_loss + cls_loss
loss.backward()
optimizer_t.step()
model.eval()
with torch.no_grad():
feat_output = model.feat_bottleneck(data.x, data.edge_index, data.batch)
cls_output = model.feat_classifier(feat_output)
softmax_out = F.softmax(cls_output, dim=1)
outputs_target = softmax_out**2 / ((softmax_out**2).sum(dim=0))
mem_cls = (1.0 - args.momentum) * mem_cls + args.momentum * outputs_target.clone()
mem_fea = (1.0 - args.momentum) * mem_fea + args.momentum * feat_output.clone()
test_acc, _ = compute_test_graph(model, loader, args)
print('Epoch: {:04d}'.format(epoch + 1), 'loss: {:.6f}'.format(loss), 'accuracy: {:.6f}'.format(test_acc), 'time: {:.6f}s'.format(time.time() - t))
print('Optimization Finished!')
return test_acc
if __name__ == '__main__':
test_acc = train_target()
print('After adaptation, test set results accuracy = {:.6f}'.format(test_acc))
with open('results-graph.txt', 'a+') as f:
f.write(args.target + ',' + str(test_acc) + ',' + str(test_acc) + ',' + str(test_acc) + '\n')
print('*'*50)
print('Before adaptation, the performance of each model is as follows: ')
for i in range(len(src)):
model = GraphClassificationModel(args).to(args.device)
model.load_state_dict(torch.load('pretrain/model_' + src[i] + '.pth'))
test_acc, _ = compute_test_graph(model, loader, args)
print('Source: ' + src[i] + ', ' + 'accuracy: ' + str(test_acc))