-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpos_demo.py
174 lines (122 loc) · 5.27 KB
/
pos_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from typing import Iterator, List, Dict
import torch
import torch.optim as optim
import numpy as np
from allennlp.data import Instance
from allennlp.data.fields import TextField, SequenceLabelField
from allennlp.data.dataset_readers import DatasetReader
from allennlp.common.file_utils import cached_path
from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer
from allennlp.data.tokenizers import Token
from allennlp.data.vocabulary import Vocabulary
from allennlp.models import Model
from allennlp.modules.text_field_embedders import TextFieldEmbedder, BasicTextFieldEmbedder
from allennlp.modules.token_embedders import Embedding
from allennlp.modules.seq2seq_encoders import Seq2SeqEncoder, PytorchSeq2SeqWrapper
from allennlp.nn.util import get_text_field_mask, sequence_cross_entropy_with_logits
from allennlp.training.metrics import CategoricalAccuracy
from allennlp.data.iterators import BucketIterator
from allennlp.training.trainer import Trainer
from allennlp.predictors import SentenceTaggerPredictor
torch.manual_seed(1)
class PosDatasetReader(DatasetReader):
"""
one sentence per line
"""
def __init__(self,
token_indexers: Dict[str, TokenIndexer] = None
) -> None:
super().__init__(lazy=False)
self.token_indexers = token_indexers or {'tokens': SingleIdTokenIndexer()}
def text_to_instance(
self,
tokens: List[Token],
tags: List[str] = None
) -> Instance:
sentence_field = TextField(tokens, self.token_indexers)
fields = {'sentence':sentence_field}
if tags:
label_field = SequenceLabelField(labels=tags, sequence_field = sentence_field)
fields['labels'] = label_field
return Instance(fields)
def _read(self, file_path:str) -> Iterator[Instance]:
with open(file_path) as f:
for line in f:
pairs = line.strip().split()
sentence, tags = zip(*(pair.split('###') for pair in pairs))
yield self.text_to_instance([Token(word) for word in sentence], tags)
class LstmTagger(Model):
def __init__(
self,
word_embedding : TextFieldEmbedder,
encoder: Seq2SeqEncoder,
vocab: Vocabulary
) -> None:
super().__init__(vocab)
self.word_embedding = word_embedding
self.encoder = encoder
self.hidden2tag = torch.nn.Linear(in_features=encoder.get_output_dim(),out_features=vocab.get_vocab_size('labels'))
self.accuracy = CategoricalAccuracy()
def forward(self,
sentence: Dict[str,torch.Tensor],
labels: torch.Tensor = None
) -> Dict[str,torch.Tensor]:
mask = get_text_field_mask(sentence)
embeddings = self.word_embedding(sentence)
encoder_out = self.encoder(embeddings, mask)
tag_logits = self.hidden2tag(encoder_out)
output = {'tag_logits': tag_logits}
if labels is not None:
self.accuracy(tag_logits,labels,mask)
output['loss'] = sequence_cross_entropy_with_logits(tag_logits, labels, mask)
return output
def get_metrics(self,
reset:bool = False
) -> Dict[str,float]:
return {'accuracy':self.accuracy.get_metric(reset)}
reader = PosDatasetReader()
train_dataset = reader.read(cached_path('https://raw.githubusercontent.com/allenai/allennlp/master/tutorials/tagger/training.txt'))
validation_dataset = reader.read(cached_path('https://raw.githubusercontent.com/allenai/allennlp/master/tutorials/tagger/validation.txt'))
vocab = Vocabulary.from_instances(train_dataset + validation_dataset)
EMBEDDING_DIM = 6
HIDDEN_DIM = 6
token_embedding = Embedding(num_embeddings=vocab.get_vocab_size('tokens'),
embedding_dim = EMBEDDING_DIM)
word_embeddings = BasicTextFieldEmbedder({'tokens': token_embedding})
lstm = PytorchSeq2SeqWrapper(torch.nn.LSTM(EMBEDDING_DIM,HIDDEN_DIM,batch_first=True))
model = LstmTagger(word_embeddings, lstm, vocab)
if torch.cuda.is_available():
cuda_device = 0
model = model.cuda(cuda_device)
else:
cuda_device = -1
optimizer = optim.SGD(model.parameters(), lr = 0.1)
iterator = BucketIterator(batch_size=20,sorting_keys = [('sentence','num_tokens')])
iterator.index_with(vocab)
trainer = Trainer(
model = model,
optimizer = optimizer,
iterator = iterator,
train_dataset = train_dataset,
validation_dataset = validation_dataset,
patience= 10,
num_epochs= 1000,
cuda_device= cuda_device
)
trainer.train()
predictor = SentenceTaggerPredictor(model, dataset_reader=reader)
tag_logits = predictor.predict("The dog ate the apple")['tag_logits']
tag_ids = np.argmax(tag_logits,axis=-1)
print([model.vocab.get_token_from_index(i,'labels') for i in tag_ids])
with open('/tmp/model.th','wb') as f:
torch.save(model.state_dict(),f)
vocab.save_to_files('/tmp/vocabulary')
vocab2 = Vocabulary.from_files('/tmp/vocabulary')
model2 = LstmTagger(word_embeddings, lstm, vocab2)
with open('/tmp/model.th','rb') as f:
model2.load_state_dict(torch.load(f))
if cuda_device > -1:
model2.cuda(cuda_device)
predictor2 = SentenceTaggerPredictor(model2,dataset_reader=reader)
tag_logits2 = predictor2.predict('The dog ate the apple')['tag_logits']
np.testing.assert_array_almost_equal(tag_logits,tag_logits2)