-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathML workflow.R
45 lines (26 loc) · 1.54 KB
/
ML workflow.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# set up training and test
intrain.ng<-createDataPartition(y=as.factor(ng$d.event), p=.75, list=F)
train.ng <-ng[intrain.ng,]
test.ng<- ng[-intrain.ng,]
#model control parameters
control <- trainControl(method="repeatedcv", number=10, repeats=2,search="random", sampling = "rose", savePredictions = T, classProbs = T,summaryFunction=twoClassSummary)
# X matrix
ng.dat<-model.matrix(~child_sex+childsize+age_fb+mother_age+child_sex+child_wanted+educ+residence+wealthindex+contraceptive_use+place_delivery+antenatal_visits+Postnatal+b_order+ b_interval+watersource+region-1, data=train.ng)
ng.dat<-data.frame(ng.dat)
# add y to matrix
ng.dat$d.event<-as.factor(train.ng$d.event)
rf_grid<-expand.grid(mtry = c(2, 5, 8, 10, 12))
rfa<-train(as.factor(d.event)~., data=ng.dat, method="rf",trControl=control, tuneGrid=rf_grid)
gl<-train(as.factor(d.event)~., data=ng.dat, method="glm", family=binomial,trControl= control)
# variable importance
plot(varImp(object=rfa), top = 10)
plot(varImp(object=gl), top=10)
## test accuracy
#test x matrix
ng.test<-model.matrix(~child_sex+childsize+age_fb+mother_age+child_sex+child_wanted+educ+residence+wealthindex+contraceptive_use+place_delivery+antenatal_visits+Postnatal+b_order+ b_interval+watersource+region-1, data=test.ng)
ng.test<-data.frame(ng.test)
ng.test$d.event<-as.factor(test.ng$d.event)
pred<-predict(rfa,newdata= ng.test, positive="dead")
confusionMatrix(data=pred, as.factor(ng.test$d.event))
pred2<-predict(gl,newdata= ng.test, positive="dead")
confusionMatrix(data=pred2, as.factor(ng.test$d.event))