From 807faaddf00d75c365761a03e193baa2e40ac6df Mon Sep 17 00:00:00 2001 From: Pierre Roux Date: Fri, 12 Apr 2024 10:08:41 +0200 Subject: [PATCH] Adapt to https://github.com/coq/coq/pull/18880 --- model/Zmod/IrrCrit.v | 4 ++-- model/setoids/Nsetoid.v | 3 +-- 2 files changed, 3 insertions(+), 4 deletions(-) diff --git a/model/Zmod/IrrCrit.v b/model/Zmod/IrrCrit.v index 0aa4414c..e9fec357 100644 --- a/model/Zmod/IrrCrit.v +++ b/model/Zmod/IrrCrit.v @@ -51,8 +51,8 @@ polynomial is irreducible over the prime field Fp, then it is irreducible over Z. *) -Variable p : positive. -Hypothesis Hprime : (Prime p). +Parameter p : positive. +Axiom Hprime : (Prime p). Definition fp := (Fp p Hprime). diff --git a/model/setoids/Nsetoid.v b/model/setoids/Nsetoid.v index b78bdbda..ebb9b5e3 100644 --- a/model/setoids/Nsetoid.v +++ b/model/setoids/Nsetoid.v @@ -263,8 +263,7 @@ Proof. exact pfun3. Defined. - -Let ex_3_ary: (on 3 5 7 plus3)[=] 3+5+7. +#[local] Lemma ex_3_ary: (on 3 5 7 plus3)[=] 3+5+7. Proof. simpl. reflexivity.