Skip to content

Commit

Permalink
dag
Browse files Browse the repository at this point in the history
  • Loading branch information
penguine-ip committed Jan 28, 2025
1 parent 03ba42b commit 9076f1f
Show file tree
Hide file tree
Showing 8 changed files with 339 additions and 109 deletions.
1 change: 1 addition & 0 deletions deepeval/metrics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
BaseMultimodalMetric,
)

from .dag.dag import DAGMetric
from .bias.bias import BiasMetric
from .toxicity.toxicity import ToxicityMetric
from .hallucination.hallucination import HallucinationMetric
Expand Down
14 changes: 4 additions & 10 deletions deepeval/metrics/dag/dag.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,11 +57,8 @@ def measure(
self.a_measure(test_case, _show_indicator=False)
)
else:
dag = DeepAcyclicGraph(
root_node=self.root_node, metric=self, test_case=test_case
)
self.score = dag._run()
self.success = self.score >= self.threshold
self.root_node._execute(metric=self, test_case=test_case)
self.success = self.is_successful()
return self.score

async def a_measure(
Expand All @@ -77,11 +74,8 @@ async def a_measure(
with metric_progress_indicator(
self, async_mode=True, _show_indicator=_show_indicator
):
dag = DeepAcyclicGraph(
root_node=self.root_node, metric=self, test_case=test_case
)
self.score = await dag._a_run()
self.success = self.score >= self.threshold
await self.root_node._a_execute(metric=self, test_case=test_case)
self.success = self.is_successful()
return self.score

def is_successful(self) -> bool:
Expand Down
44 changes: 5 additions & 39 deletions deepeval/metrics/dag/graph.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
from typing import Set, List

from deepeval.metrics.dag import BaseNode, VerdictNode
from deepeval.metrics.dag import BaseNode
from deepeval.test_case import LLMTestCase
from deepeval.metrics import BaseMetric

Expand All @@ -16,42 +16,8 @@ def __init__(
self.metric = metric
self.test_case = test_case

def _topological_sort(
self, node: BaseNode, visited: Set[BaseNode], stack: List[BaseNode]
) -> None:
if node in visited:
return
visited.add(node)
def execute(self) -> None:
self.root_node._execute(metric=self.metric, test_case=self.test_case)

if isinstance(node, VerdictNode):
if node.child is not None:
self._topological_sort(node.child, visited, stack)
elif hasattr(node, "children"):
for child in node.children:
self._topological_sort(child, visited, stack)

stack.append(node)

def evaluate(self) -> None:
visited: Set[BaseNode] = set()
stack: List[BaseNode] = []

self._topological_sort(self.root_node, visited, stack)

while stack:
node = stack.pop()
if isinstance(node, BaseNode):
node._execute(metric=self.metric, test_case=self.test_case)

async def a_evaluate(self) -> None:
visited: Set[BaseNode] = set()
stack: List[BaseNode] = []

self._topological_sort(self.root_node, visited, stack)

while stack:
node = stack.pop()
if isinstance(node, BaseNode):
await node._a_execute(
metric=self.metric, test_case=self.test_case
)
async def a_execute(self) -> None:
self.root_node._a_execute(metric=self.metric, test_case=self.test_case)
Loading

0 comments on commit 9076f1f

Please sign in to comment.