-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2. KNN.html
961 lines (859 loc) · 69.3 KB
/
2. KNN.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
<title>K - Nearest Neighbour — Data Science Notes</title>
<link href="_static/css/theme.css" rel="stylesheet">
<link href="_static/css/index.ff1ffe594081f20da1ef19478df9384b.css" rel="stylesheet">
<link rel="stylesheet"
href="_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/sphinx-book-theme.css?digest=c3fdc42140077d1ad13ad2f1588a4309" />
<link rel="stylesheet" type="text/css" href="_static/togglebutton.css" />
<link rel="stylesheet" type="text/css" href="_static/copybutton.css" />
<link rel="stylesheet" type="text/css" href="_static/mystnb.css" />
<link rel="stylesheet" type="text/css" href="_static/sphinx-thebe.css" />
<link rel="stylesheet" type="text/css" href="_static/panels-main.c949a650a448cc0ae9fd3441c0e17fb0.css" />
<link rel="stylesheet" type="text/css" href="_static/panels-variables.06eb56fa6e07937060861dad626602ad.css" />
<link rel="preload" as="script" href="_static/js/index.be7d3bbb2ef33a8344ce.js">
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/togglebutton.js"></script>
<script src="_static/clipboard.min.js"></script>
<script src="_static/copybutton.js"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown, .tag_hide_input div.cell_input, .tag_hide-input div.cell_input, .tag_hide_output div.cell_output, .tag_hide-output div.cell_output, .tag_hide_cell.cell, .tag_hide-cell.cell';</script>
<script src="_static/sphinx-book-theme.12a9622fbb08dcb3a2a40b2c02b83a57.js"></script>
<script defer="defer" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script>window.MathJax = {"options": {"processHtmlClass": "tex2jax_process|mathjax_process|math|output_area"}}</script>
<script async="async" src="https://unpkg.com/thebe@0.5.1/lib/index.js"></script>
<script>
const thebe_selector = ".thebe"
const thebe_selector_input = "pre"
const thebe_selector_output = ".output"
</script>
<script async="async" src="_static/sphinx-thebe.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Linear Regression" href="3.1%20Linear%20Regression.html" />
<link rel="prev" title="Pandas" href="1.3%20Introduction%20to%20Pandas.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="None">
<!-- Google Analytics -->
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<div class="container-fluid" id="banner"></div>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar site-navigation show" id="site-navigation">
<div class="navbar-brand-box">
<a class="navbar-brand text-wrap" href="index.html">
<!-- `logo` is deprecated in Sphinx 4.0, so remove this when we stop supporting 3 -->
<img src="_static/logo.svg" class="logo" alt="logo">
<h1 class="site-logo" id="site-title">Data Science Notes</h1>
</a>
</div><form class="bd-search d-flex align-items-center" action="search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search this book..." aria-label="Search this book..." autocomplete="off" >
</form><nav class="bd-links" id="bd-docs-nav" aria-label="Main">
<div class="bd-toc-item active">
<ul class="nav bd-sidenav">
<li class="toctree-l1">
<a class="reference internal" href="intro.html">
Introduction
</a>
</li>
</ul>
<p aria-level="2" class="caption" role="heading">
<span class="caption-text">
Machine Learning
</span>
</p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1">
<a class="reference internal" href="1.1%20Introduction%20to%20Numpy.html">
Numpy
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="1.2%20Introduction%20to%20Matplotlib.html">
Matplotlib: Visualization with Python
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="1.3%20Introduction%20to%20Pandas.html">
Pandas
</a>
</li>
<li class="toctree-l1 current active">
<a class="current reference internal" href="#">
K - Nearest Neighbour
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="3.1%20Linear%20Regression.html">
Linear Regression
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="3.2%20Multi-Variate%20Regression.html">
Multi Variable Regression
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="3.3%20MLE%20-%20Linear%20Regression.html">
MLE - Linear Regression
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="3.4%20GLM%20-%20Linear%20Regression.html">
Generalised linear model-Linear Regression
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="4.%20Gradient%20Descent.html">
Gradient Descent
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="5.1%20%20Logistic%20Regression.html">
Logistic Regression
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="5.2%20Maximum%20Likelihood%20Estimation%20and%20Implementation.html">
Logistic Regression MLE & Implementation
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="6.%20Decision%20Trees.html">
Decision Tree Algorithm
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="7.%20Ensemble.html">
Ensemble Learning
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="9.1%20Naive%20Bayes.html">
Naive Bayes Algorithm
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="9.2%20Multinomial%20Naive%20Bayes.html">
Multinomial Naive Bayes
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="11.%20Imbalanced%20Dataset.html">
Imbalanced Dataset
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="12.%20PCA.html">
Principal Component Analysis
</a>
</li>
</ul>
<p aria-level="2" class="caption" role="heading">
<span class="caption-text">
About
</span>
</p>
<ul class="nav bd-sidenav">
<li class="toctree-l1">
<a class="reference internal" href="About%20the%20Authors.html">
Acknowledgement
</a>
</li>
</ul>
</div>
</nav> <!-- To handle the deprecated key -->
<div class="navbar_extra_footer">
Powered by <a href="https://jupyterbook.org">Jupyter Book</a>
</div>
</div>
<main class="col py-md-3 pl-md-4 bd-content overflow-auto" role="main">
<div class="topbar container-xl fixed-top">
<div class="topbar-contents row">
<div class="col-12 col-md-3 bd-topbar-whitespace site-navigation show"></div>
<div class="col pl-md-4 topbar-main">
<button id="navbar-toggler" class="navbar-toggler ml-0" type="button" data-toggle="collapse"
data-toggle="tooltip" data-placement="bottom" data-target=".site-navigation" aria-controls="navbar-menu"
aria-expanded="true" aria-label="Toggle navigation" aria-controls="site-navigation"
title="Toggle navigation" data-toggle="tooltip" data-placement="left">
<i class="fas fa-bars"></i>
<i class="fas fa-arrow-left"></i>
<i class="fas fa-arrow-up"></i>
</button>
<div class="dropdown-buttons-trigger">
<button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn" aria-label="Download this page"><i
class="fas fa-download"></i></button>
<div class="dropdown-buttons">
<!-- ipynb file if we had a myst markdown file -->
<!-- Download raw file -->
<a class="dropdown-buttons" href="_sources/2. KNN.ipynb"><button type="button"
class="btn btn-secondary topbarbtn" title="Download source file" data-toggle="tooltip"
data-placement="left">.ipynb</button></a>
<!-- Download PDF via print -->
<button type="button" id="download-print" class="btn btn-secondary topbarbtn" title="Print to PDF"
onClick="window.print()" data-toggle="tooltip" data-placement="left">.pdf</button>
</div>
</div>
<!-- Source interaction buttons -->
<!-- Full screen (wrap in <a> to have style consistency -->
<a class="full-screen-button"><button type="button" class="btn btn-secondary topbarbtn" data-toggle="tooltip"
data-placement="bottom" onclick="toggleFullScreen()" aria-label="Fullscreen mode"
title="Fullscreen mode"><i
class="fas fa-expand"></i></button></a>
<!-- Launch buttons -->
<div class="dropdown-buttons-trigger">
<button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn"
aria-label="Launch interactive content"><i class="fas fa-rocket"></i></button>
<div class="dropdown-buttons">
<a class="binder-button" href="https://mybinder.org/v2/gh/executablebooks/jupyter-book/master?urlpath=tree/2. KNN.ipynb"><button type="button"
class="btn btn-secondary topbarbtn" title="Launch Binder" data-toggle="tooltip"
data-placement="left"><img class="binder-button-logo"
src="_static/images/logo_binder.svg"
alt="Interact on binder">Binder</button></a>
</div>
</div>
</div>
<!-- Table of contents -->
<div class="d-none d-md-block col-md-2 bd-toc show">
<div class="tocsection onthispage pt-5 pb-3">
<i class="fas fa-list"></i> Contents
</div>
<nav id="bd-toc-nav" aria-label="Page">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#introduction">
Introduction
</a>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#classification-by-knn">
Classification by KNN
</a>
<ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry">
<a class="reference internal nav-link" href="#importing-the-data">
Importing the Data
</a>
</li>
<li class="toc-h3 nav-item toc-entry">
<a class="reference internal nav-link" href="#plotting-the-data">
Plotting the Data
</a>
</li>
<li class="toc-h3 nav-item toc-entry">
<a class="reference internal nav-link" href="#value-of-k">
Value of K
</a>
</li>
<li class="toc-h3 nav-item toc-entry">
<a class="reference internal nav-link" href="#accuracy">
Accuracy
</a>
</li>
<li class="toc-h3 nav-item toc-entry">
<a class="reference internal nav-link" href="#training-validation-datasets">
Training & Validation Datasets
</a>
</li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#knn-code-classification">
KNN - Code (Classification)
</a>
<ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry">
<a class="reference internal nav-link" href="#plotting-the-divided-data">
Plotting the divided data
</a>
</li>
<li class="toc-h3 nav-item toc-entry">
<a class="reference internal nav-link" href="#hyperparameter">
Hyperparameter :-
</a>
</li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#regression-by-knn">
Regression by KNN
</a>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#knn-code-regression">
KNN - Code (Regression)
</a>
<ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry">
<a class="reference internal nav-link" href="#splitting-the-data">
Splitting the Data
</a>
</li>
<li class="toc-h3 nav-item toc-entry">
<a class="reference internal nav-link" href="#id1">
Plotting the Divided Data
</a>
<ul class="nav section-nav flex-column">
<li class="toc-h4 nav-item toc-entry">
<a class="reference internal nav-link" href="#plotting-the-prediction-and-the-closest-points-that-helped-in-making-the-prediction">
Plotting the prediction and the closest points that helped in making the prediction
</a>
</li>
</ul>
</li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#limitations-of-knn">
Limitations of KNN
</a>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#further-readings">
Further Readings
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div id="main-content" class="row">
<div class="col-12 col-md-9 pl-md-3 pr-md-0">
<div>
<section class="tex2jax_ignore mathjax_ignore" id="k-nearest-neighbour">
<h1>K - Nearest Neighbour<a class="headerlink" href="#k-nearest-neighbour" title="Permalink to this headline">¶</a></h1>
<section id="introduction">
<h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline">¶</a></h2>
<ul class="simple">
<li><p>The k-nearest neighbors (KNN) algorithm is a simple, easy-to-implement supervised machine learning algorithm that can be used to solve both classification and regression problems.</p></li>
<li><p>K-NN algorithm assumes the similarity between the new case/data and available cases and put the new case into the category that is most similar to the available categories.</p></li>
<li><p>K-NN algorithm stores all the available data and classifies a new data point based on the similarity. This means when new data appears then it can be easily classified into a well suite category by using K- NN algorithm.</p></li>
</ul>
<p>So Let’s use KNN for classification first, then we’ll get to the Regression part.</p>
</section>
<section id="classification-by-knn">
<h2>Classification by KNN<a class="headerlink" href="#classification-by-knn" title="Permalink to this headline">¶</a></h2>
<p>To understand KNN easily, let’s take the help of an example. Consider a dataset of fruits containing papaya, watermelons and banana. We’ll import the data under the variable X, which will be containing their weights(in grams) and lengths(in cms), and then we’ll import their corresponding class information under the variable y.</p>
<p><strong>X looks like:</strong></p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">[[</span><span class="mf">172.11442877</span><span class="p">,</span> <span class="mf">45.5178053</span><span class="p">],</span>
<span class="p">[</span><span class="mf">632.42895259</span><span class="p">,</span> <span class="mf">35.1191498</span><span class="p">],</span>
<span class="p">[</span><span class="mf">566.95401123</span><span class="p">,</span> <span class="mf">45.58070533</span><span class="p">],</span>
<span class="p">[</span><span class="mf">843.01570417</span><span class="p">,</span> <span class="mf">41.95568043</span><span class="p">],</span>
<span class="p">[</span><span class="mf">667.04934768</span><span class="p">,</span> <span class="mf">41.76381231</span><span class="p">],</span><span class="o">...</span> <span class="mi">500</span> <span class="n">instances</span><span class="p">]</span>
</pre></div>
</div>
<p><strong>y looks like:</strong></p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span><span class="o">...</span> <span class="mi">500</span> <span class="n">instances</span><span class="p">]</span>
</pre></div>
</div>
<p>Note here 0 is used for papaya, 1 is used for watermelon & 2 is used for banana.</p>
<p>X.shape => (500,2) -> 500 instances and 2 features(weight & length)</p>
<p>y.shape => (500,) -> class to every corresponding X instance</p>
<section id="importing-the-data">
<h3>Importing the Data<a class="headerlink" href="#importing-the-data" title="Permalink to this headline">¶</a></h3>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">"./Data/KNN/Classification/X_data.npy"</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">"./Data/KNN/Classification/Y_data.npy"</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">X</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">y</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>(500, 2) (500,)
</pre></div>
</div>
</div>
</div>
</section>
<section id="plotting-the-data">
<h3>Plotting the Data<a class="headerlink" href="#plotting-the-data" title="Permalink to this headline">¶</a></h3>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">"*This isn't a real Dataset, it is only made to teach KNN concepts."</span><span class="p">)</span>
<span class="n">papaya</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="n">y</span><span class="o">==</span><span class="mi">0</span><span class="p">]</span>
<span class="n">watermelons</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="n">y</span><span class="o">==</span><span class="mi">1</span><span class="p">]</span>
<span class="n">banana</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="n">y</span><span class="o">==</span><span class="mi">2</span><span class="p">]</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">papaya</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span><span class="n">papaya</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">label</span> <span class="o">=</span> <span class="s2">"Papaya"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">watermelons</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span><span class="n">watermelons</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">label</span> <span class="o">=</span> <span class="s2">"Watermelon"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">banana</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span><span class="n">banana</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">label</span> <span class="o">=</span> <span class="s2">"Banana"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">"Weight(in grams)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">"Length (in cm)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>*This isn't a real Dataset, it is only made to teach KNN concepts.
</pre></div>
</div>
<img alt="_images/2. KNN_3_1.png" src="_images/2. KNN_3_1.png" />
</div>
</div>
<p>Now as we have plotted the given data, let’s see some new points that we have to classify using KNN, lets take 4 new points, A,B,C & D.</p>
<p>A = [[300],[50]]</p>
<p>B = [[700],[40]]</p>
<p>C = [[600],[80]]</p>
<p>D = [[600],[60]]</p>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">"*This isn't a real Dataset, it is only made to teach KNN concepts."</span><span class="p">)</span>
<span class="n">papaya</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="n">y</span><span class="o">==</span><span class="mi">0</span><span class="p">]</span>
<span class="n">watermelons</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="n">y</span><span class="o">==</span><span class="mi">1</span><span class="p">]</span>
<span class="n">banana</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="n">y</span><span class="o">==</span><span class="mi">2</span><span class="p">]</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">papaya</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span><span class="n">papaya</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">label</span> <span class="o">=</span> <span class="s2">"Papaya"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">watermelons</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span><span class="n">watermelons</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">label</span> <span class="o">=</span> <span class="s2">"Watermelon"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">banana</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span><span class="n">banana</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">label</span> <span class="o">=</span> <span class="s2">"Banana"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">([</span><span class="mi">300</span><span class="p">],[</span><span class="mi">50</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="s2">"black"</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s2">"Unidentified Point"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">([</span><span class="mi">700</span><span class="p">],[</span><span class="mi">40</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="s2">"black"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">([</span><span class="mi">600</span><span class="p">],[</span><span class="mi">80</span><span class="p">],</span> <span class="n">c</span> <span class="o">=</span><span class="s2">"black"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">([</span><span class="mi">600</span><span class="p">],[</span><span class="mi">60</span><span class="p">],</span> <span class="n">c</span> <span class="o">=</span> <span class="s2">"black"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">"Weight(in grams)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">"Length (in cm)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>*This isn't a real Dataset, it is only made to teach KNN concepts.
</pre></div>
</div>
<img alt="_images/2. KNN_5_1.png" src="_images/2. KNN_5_1.png" />
</div>
</div>
<p>Now before applying any algorithm, just by seeing at the graph we can tell point A(300,50), belongs to Banana, similarly B(700,40) belongs to Papaya and C(600,80) belongs to Watermelon. But can we tell which group should D(600,60) belong to?, and how exactly we were able to tell about A, B & C?</p>
<p>The answer is simple, we saw that the point A is lying in somewhere middle of the Banana cluster, same for B & C, or in other words we can say that we saw its neighbouring points. And to classify point D, we can use same technique i.e. we can see <strong>some</strong> closest points, and find the max. no. of points belonging to a group, and we can say point D should also belong to that group.</p>
<p>Now what is the value of this <strong>some</strong>?</p>
<p>=> This some is called the parameter <strong>K</strong> in KNN</p>
</section>
<section id="value-of-k">
<h3>Value of K<a class="headerlink" href="#value-of-k" title="Permalink to this headline">¶</a></h3>
<p>If we keep value of <em>K = 1</em> , it will only consider a single closest point, which will not be fair because there may be existing an outlier(a falsely classified point) nearest to it, means our algorithm will only consider that point and will false classify the new point too. So, we should consider increasing the value of K.</p>
<p>What if we consider all the points? i.e. K=len(X)</p>
<p>It will also be unfair because in this case it will consider all the existing points of the data, and will always classify the new point to the majority class.</p>
<p>By now you must have thought of putting K = len(X)/2, but there’s no certainity that this time our model will correctly classify the new point. (Cosider a data where class A has 5 points, and class B has 50 points, it will not perform well.)</p>
<p>So to understand about the value of K, we should first learn about 3 topics -> Training Data, Validation Data & Accuracy.</p>
</section>
<section id="accuracy">
<h3>Accuracy<a class="headerlink" href="#accuracy" title="Permalink to this headline">¶</a></h3>
<p>Accuracy is defined as the degree to which the result of a measurement conforms to the correct value, or we can say it is a metric that tells us about the accuracy of the model.</p>
</section>
<section id="training-validation-datasets">
<h3>Training & Validation Datasets<a class="headerlink" href="#training-validation-datasets" title="Permalink to this headline">¶</a></h3>
<p>To ensure maximum accuracy of a model, we should test it on certain test cases, and match the predicted value to the real true value. So, to achieve this we’ll need some data, whose true value are known to us. So, we divide our given data into 2 parts in ratio of 8:2 (can differ depending on data). The 80% of the data is classified as the training dataset, and the rest 20% of the data is classified as validation dataset.</p>
<p>So now, the value of K is measured between 1 and len(X), so that we can achieve maximum accuracy.</p>
</section>
</section>
<section id="knn-code-classification">
<h2>KNN - Code (Classification)<a class="headerlink" href="#knn-code-classification" title="Permalink to this headline">¶</a></h2>
<p>So, as discussed, first let’s divide our data into training and Validation Datasets.</p>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="n">train_idxs</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="nb">len</span><span class="p">(</span><span class="n">X</span><span class="p">)),</span> <span class="n">size</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">X</span><span class="p">)</span><span class="o">*</span><span class="mf">0.8</span><span class="p">),</span> <span class="n">replace</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">test_idxs</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">X</span><span class="p">)):</span>
<span class="k">if</span> <span class="n">i</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">train_idxs</span><span class="p">:</span>
<span class="n">test_idxs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">i</span><span class="p">)</span>
<span class="n">test_idxs</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">test_idxs</span><span class="p">)</span>
<span class="n">X_train</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="n">train_idxs</span><span class="p">]</span>
<span class="n">y_train</span> <span class="o">=</span> <span class="n">y</span><span class="p">[</span><span class="n">train_idxs</span><span class="p">]</span>
<span class="n">X_test</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="n">test_idxs</span><span class="p">]</span>
<span class="n">y_test</span> <span class="o">=</span> <span class="n">y</span><span class="p">[</span><span class="n">test_idxs</span><span class="p">]</span>
</pre></div>
</div>
</div>
</div>
<section id="plotting-the-divided-data">
<h3>Plotting the divided data<a class="headerlink" href="#plotting-the-divided-data" title="Permalink to this headline">¶</a></h3>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">"*This isn't a real Dataset, it is only made to teach KNN concepts."</span><span class="p">)</span>
<span class="n">papaya</span> <span class="o">=</span> <span class="n">X_train</span><span class="p">[</span><span class="n">y_train</span><span class="o">==</span><span class="mi">0</span><span class="p">]</span>
<span class="n">watermelons</span> <span class="o">=</span> <span class="n">X_train</span><span class="p">[</span><span class="n">y_train</span><span class="o">==</span><span class="mi">1</span><span class="p">]</span>
<span class="n">banana</span> <span class="o">=</span> <span class="n">X_train</span><span class="p">[</span><span class="n">y_train</span><span class="o">==</span><span class="mi">2</span><span class="p">]</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">papaya</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span><span class="n">papaya</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">label</span> <span class="o">=</span> <span class="s2">"Papaya"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">watermelons</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span><span class="n">watermelons</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">label</span> <span class="o">=</span> <span class="s2">"Watermelon"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">banana</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span><span class="n">banana</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">label</span> <span class="o">=</span> <span class="s2">"Banana"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X_test</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">X_test</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">c</span> <span class="o">=</span> <span class="s2">"black"</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s2">"Unidentified Points"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">"Weight(in grams)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">"Length (in cm)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>*This isn't a real Dataset, it is only made to teach KNN concepts.
</pre></div>
</div>
<img alt="_images/2. KNN_10_1.png" src="_images/2. KNN_10_1.png" />
</div>
</div>
<p>So now let’s start coding KNN</p>
<p>First we’ll need a function to calculate the distance between two points, so that we can find the closest ones later on.</p>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">distance</span><span class="p">(</span><span class="n">p1</span><span class="p">,</span><span class="n">p2</span><span class="p">):</span>
<span class="n">d</span> <span class="o">=</span> <span class="p">((</span><span class="n">p1</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="n">p2</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span><span class="o">**</span><span class="mi">2</span> <span class="o">+</span> <span class="p">(</span><span class="n">p1</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">p2</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">**</span><span class="mf">0.5</span> <span class="c1">#Distance Formula</span>
<span class="k">return</span> <span class="n">d</span>
</pre></div>
</div>
</div>
</div>
<blockquote>
<div><p><strong>Note:</strong></p>
<blockquote>
<div><p>The distance Formula <span class="math notranslate nohighlight">\(\sqrt[]{(x_2 - x_1)^2+(y_2 - y_1)^2}\)</span>, is also known as <span class="math notranslate nohighlight">\(L_2-norm\)</span>.<br>
Norms are some functions that bring an n-d vector to 1-d constant.<br>
For eg: Sum, Distance, Dot products.<br>
To know more about norms, read <a class="reference external" href="https://en.wikipedia.org/wiki/Norm_(mathematics)">https://en.wikipedia.org/wiki/Norm_(mathematics)</a><br>
and learn about <span class="math notranslate nohighlight">\(L_0 , L_1 , L_2 and L_\infty\)</span> norms, which may help you further.<br></p>
</div></blockquote>
</div></blockquote>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1">#Now let's make the predict function, which takes a point as input, and returns its predicted class</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="n">p</span><span class="p">,</span><span class="n">k</span><span class="p">):</span>
<span class="n">distances</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">instance</span> <span class="ow">in</span> <span class="n">X_train</span><span class="p">:</span>
<span class="n">d</span> <span class="o">=</span> <span class="n">distance</span><span class="p">(</span><span class="n">p</span><span class="p">,</span><span class="n">instance</span><span class="p">)</span>
<span class="n">distances</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">d</span><span class="p">)</span>
<span class="n">distances</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">distances</span><span class="p">)</span>
<span class="n">top_indexes</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argsort</span><span class="p">(</span><span class="n">distances</span><span class="p">)[:</span><span class="n">k</span><span class="p">]</span>
<span class="n">k_neighbours</span> <span class="o">=</span> <span class="n">y_train</span><span class="p">[</span><span class="n">top_indexes</span><span class="p">]</span>
<span class="n">unique_classes</span><span class="p">,</span> <span class="n">counts</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">unique</span><span class="p">(</span><span class="n">k_neighbours</span><span class="p">,</span> <span class="n">return_counts</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
<span class="n">predicted_class</span> <span class="o">=</span> <span class="n">unique_classes</span><span class="p">[</span><span class="n">counts</span><span class="o">.</span><span class="n">argmax</span><span class="p">()]</span>
<span class="n">confidence</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">counts</span><span class="p">)</span><span class="o">/</span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">counts</span><span class="p">)</span>
<span class="k">return</span> <span class="n">predicted_class</span><span class="p">,</span> <span class="n">confidence</span><span class="o">*</span><span class="mi">100</span>
</pre></div>
</div>
</div>
</div>
<p>Now let’s take a random value of k as 5, to test our code, and try to predict the classes of A,B,C & D</p>
<p>A = [[300],[50]]</p>
<p>B = [[700],[40]]</p>
<p>C = [[600],[80]]</p>
<p>D = [[600],[60]]</p>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="n">predict</span><span class="p">([</span><span class="mi">300</span><span class="p">,</span><span class="mi">50</span><span class="p">],</span><span class="mi">5</span><span class="p">))</span> <span class="c1">#A</span>
<span class="nb">print</span><span class="p">(</span><span class="n">predict</span><span class="p">([</span><span class="mi">700</span><span class="p">,</span><span class="mi">40</span><span class="p">],</span><span class="mi">5</span><span class="p">))</span> <span class="c1">#B</span>
<span class="nb">print</span><span class="p">(</span><span class="n">predict</span><span class="p">([</span><span class="mi">600</span><span class="p">,</span><span class="mi">80</span><span class="p">],</span><span class="mi">5</span><span class="p">))</span> <span class="c1">#C</span>
<span class="nb">print</span><span class="p">(</span><span class="n">predict</span><span class="p">([</span><span class="mi">600</span><span class="p">,</span><span class="mi">60</span><span class="p">],</span><span class="mi">5</span><span class="p">))</span> <span class="c1">#D</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>(2, 100.0)
(0, 100.0)
(1, 100.0)
(0, 60.0)
</pre></div>
</div>
</div>
</div>
<p>We can see, we got the correct predictions for A,B & C as well as D(although with 60% probability)
And at this point, we know our code is working properly fine and getting the job done.
So now lets move on, and optimize our code for the value of <strong>K</strong>.</p>
<p>For that we should first define a function for calculating accuracy.</p>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">accuracy</span><span class="p">(</span><span class="n">k</span><span class="p">):</span>
<span class="n">predictions</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">instance</span> <span class="ow">in</span> <span class="n">X_test</span><span class="p">:</span>
<span class="n">predictions</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">predict</span><span class="p">(</span><span class="n">instance</span><span class="p">,</span><span class="n">k</span><span class="p">)[</span><span class="mi">0</span><span class="p">])</span>
<span class="n">acc</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">predictions</span><span class="p">)):</span>
<span class="k">if</span> <span class="n">predictions</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="n">y_test</span><span class="p">[</span><span class="n">i</span><span class="p">]:</span>
<span class="n">acc</span><span class="o">+=</span><span class="mi">1</span>
<span class="n">acc</span> <span class="o">=</span> <span class="p">(</span><span class="n">acc</span><span class="o">/</span><span class="nb">len</span><span class="p">(</span><span class="n">predictions</span><span class="p">))</span><span class="o">*</span><span class="mi">100</span>
<span class="k">return</span> <span class="n">acc</span>
</pre></div>
</div>
</div>
</div>
<p>Now let’s plot a graph between different values of K v/s their accuracy</p>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="n">k_list</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">10</span><span class="p">,</span><span class="mi">15</span><span class="p">,</span><span class="mi">20</span><span class="p">,</span><span class="mi">30</span><span class="p">,</span><span class="mi">50</span><span class="p">,</span><span class="mi">60</span><span class="p">,</span><span class="mi">100</span><span class="p">,</span><span class="mi">120</span><span class="p">,</span><span class="mi">150</span><span class="p">,</span><span class="mi">180</span><span class="p">,</span><span class="mi">200</span><span class="p">,</span><span class="mi">220</span><span class="p">,</span><span class="mi">230</span><span class="p">,</span><span class="mi">250</span><span class="p">,</span><span class="mi">275</span><span class="p">,</span><span class="mi">300</span><span class="p">,</span><span class="mi">325</span><span class="p">,</span><span class="mi">350</span><span class="p">,</span><span class="mi">375</span><span class="p">,</span><span class="mi">400</span><span class="p">]</span>
<span class="n">accuracies</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">k_list</span><span class="p">:</span>
<span class="n">accuracies</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">accuracy</span><span class="p">(</span><span class="n">k</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">k_list</span><span class="p">,</span><span class="n">accuracies</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<img alt="_images/2. KNN_20_0.png" src="_images/2. KNN_20_0.png" />
</div>
</div>
<p>So, we can see for different values of K, we got different accuracies. And we can see for which values of K, we’re getting maximum accuracy.</p>
</section>
<section id="hyperparameter">
<h3>Hyperparameter :-<a class="headerlink" href="#hyperparameter" title="Permalink to this headline">¶</a></h3>
<p>Here as we saw, we ourselves have to set the value of <strong>K</strong>, and the whole performance of the model depends on its value. These type of values, that we have to set on our own, and which affects the performance of the model are called <strong>Hyperparameters</strong>.</p>
</section>
</section>
<section id="regression-by-knn">
<h2>Regression by KNN<a class="headerlink" href="#regression-by-knn" title="Permalink to this headline">¶</a></h2>
<p>Now as we’ve done a classification task, let’s see a regression task as well, with the help of an Example too.
Below is a house price dataset, having only single feature of land size. So X contains land size(in sq. feet) of some houses of a locality, and y contains their corresponding prices (in crores).</p>
<p><strong>X looks like :</strong></p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">[[</span><span class="mf">1599.60448522</span><span class="p">],</span>
<span class="p">[</span><span class="mf">1793.63237666</span><span class="p">],</span>
<span class="p">[</span><span class="mf">4588.03138463</span><span class="p">],</span>
<span class="p">[</span><span class="mf">3621.75315899</span><span class="p">],</span>
<span class="p">[</span><span class="mf">4343.08060035</span><span class="p">],</span><span class="o">...</span> <span class="mi">50</span> <span class="n">instances</span><span class="p">]</span>
</pre></div>
</div>
<p><strong>y looks like:</strong></p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">[</span><span class="mf">2.65917039</span><span class="p">,</span> <span class="mf">2.27477643</span><span class="p">,</span> <span class="mf">5.08075256</span><span class="p">,</span> <span class="mf">3.97100962</span><span class="p">,</span> <span class="mf">4.61060872</span><span class="p">,</span><span class="o">...</span> <span class="mi">50</span> <span class="n">instances</span><span class="p">]</span>
</pre></div>
</div>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">"./Data/KNN/Regression/X_data.npy"</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">"./Data/KNN/Regression/Y_data.npy"</span><span class="p">)</span>
<span class="n">X</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">y</span><span class="o">.</span><span class="n">shape</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>((50, 1), (50,))
</pre></div>
</div>
</div>
</div>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">"*This isn't a real Dataset, it is only made to teach KNN concepts."</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">"Land Size (in sq. feet)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">"House Price (in crores)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>*This isn't a real Dataset, it is only made to teach KNN concepts.
</pre></div>
</div>
<img alt="_images/2. KNN_24_1.png" src="_images/2. KNN_24_1.png" />
</div>
</div>
<p>Now to perform regression by KNN, we follow the same methodology. To predict the price of a new house, we’ll conisder the house of prices whose land sizes are very close to the new instance. and then finally we can find out their mean which will be the price of our new house.</p>
</section>
<section id="knn-code-regression">
<h2>KNN - Code (Regression)<a class="headerlink" href="#knn-code-regression" title="Permalink to this headline">¶</a></h2>
<p>So as done earlier, let’s first split our data to training and validation datasets.</p>
<section id="splitting-the-data">
<h3>Splitting the Data<a class="headerlink" href="#splitting-the-data" title="Permalink to this headline">¶</a></h3>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="n">train_idxs</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="nb">len</span><span class="p">(</span><span class="n">X</span><span class="p">)),</span> <span class="n">size</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">X</span><span class="p">)</span><span class="o">*</span><span class="mf">0.8</span><span class="p">),</span> <span class="n">replace</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">test_idxs</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">X</span><span class="p">))</span> <span class="k">if</span> <span class="n">i</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">train_idxs</span><span class="p">])</span>
<span class="n">X_train</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="n">train_idxs</span><span class="p">]</span>
<span class="n">y_train</span> <span class="o">=</span> <span class="n">y</span><span class="p">[</span><span class="n">train_idxs</span><span class="p">]</span>
<span class="n">X_test</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="n">test_idxs</span><span class="p">]</span>
<span class="n">y_test</span> <span class="o">=</span> <span class="n">y</span><span class="p">[</span><span class="n">test_idxs</span><span class="p">]</span>
</pre></div>
</div>
</div>
</div>
</section>
<section id="id1">
<h3>Plotting the Divided Data<a class="headerlink" href="#id1" title="Permalink to this headline">¶</a></h3>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">"*This isn't a real Dataset, it is only made to teach KNN concepts."</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span><span class="n">y_train</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">"Training Data"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X_test</span><span class="p">,</span> <span class="n">y_test</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s2">"Validation Data"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">"Land Size (in sq. feet)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">"House Price (in crores)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>*This isn't a real Dataset, it is only made to teach KNN concepts.
</pre></div>
</div>
<img alt="_images/2. KNN_29_1.png" src="_images/2. KNN_29_1.png" />
</div>
</div>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">distance</span><span class="p">(</span><span class="n">p1</span><span class="p">,</span><span class="n">p2</span><span class="p">):</span>
<span class="k">return</span> <span class="nb">abs</span><span class="p">(</span><span class="n">p2</span><span class="o">-</span><span class="n">p1</span><span class="p">)</span> <span class="c1"># return absolute value</span>
<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="n">point</span><span class="p">,</span> <span class="n">k</span><span class="p">):</span>
<span class="n">distances</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">instance</span> <span class="ow">in</span> <span class="n">X_train</span><span class="p">:</span>
<span class="n">distances</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">distance</span><span class="p">(</span><span class="n">instance</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">point</span><span class="p">))</span>
<span class="n">distances</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">distances</span><span class="p">)</span>
<span class="n">top_indexes</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argsort</span><span class="p">(</span><span class="n">distances</span><span class="p">)[:</span><span class="n">k</span><span class="p">]</span>
<span class="n">y_pred</span> <span class="o">=</span> <span class="n">y_train</span><span class="p">[</span><span class="n">top_indexes</span><span class="p">]</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
<span class="k">return</span> <span class="n">y_pred</span> <span class="p">,</span><span class="n">top_indexes</span>
</pre></div>
</div>
</div>
</div>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="n">land_size</span> <span class="o">=</span> <span class="mi">3000</span>
<span class="n">prediction</span><span class="p">,</span> <span class="n">closest_points</span> <span class="o">=</span> <span class="n">predict</span><span class="p">(</span><span class="n">land_size</span><span class="p">,</span><span class="mi">5</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">prediction</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>3.597148662984181
</pre></div>
</div>
</div>
</div>
<section id="plotting-the-prediction-and-the-closest-points-that-helped-in-making-the-prediction">
<h4>Plotting the prediction and the closest points that helped in making the prediction<a class="headerlink" href="#plotting-the-prediction-and-the-closest-points-that-helped-in-making-the-prediction" title="Permalink to this headline">¶</a></h4>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">"*This isn't a real Dataset, it is only made to teach KNN concepts."</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span><span class="n">y_train</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">"Training Data"</span><span class="p">,</span> <span class="n">c</span> <span class="o">=</span> <span class="s2">"blue"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X_train</span><span class="p">[</span><span class="n">closest_points</span><span class="p">]</span> <span class="p">,</span><span class="n">y_train</span><span class="p">[</span><span class="n">closest_points</span><span class="p">],</span> <span class="n">c</span> <span class="o">=</span><span class="s2">"red"</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">"Closest Points"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">land_size</span><span class="p">,</span> <span class="n">prediction</span><span class="p">,</span> <span class="n">c</span> <span class="o">=</span> <span class="s2">"yellow"</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s2">"New instance"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">"Land Size (in sq. feet)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">"House Price (in crores)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>*This isn't a real Dataset, it is only made to teach KNN concepts.
</pre></div>
</div>
<img alt="_images/2. KNN_33_1.png" src="_images/2. KNN_33_1.png" />
</div>
</div>
<p>As done earlier, we can make an accuracy function and then plot the graph of K v/s accuracy, and instead of using randomly k = 5, we can get the value of K, that gives us the maximum accuracy.</p>
<p>*You should try it on your own, as it can be a good practice problem.</p>
<p>Now as we can see, a line can be fitted in this data, to get a good prediction, so let’s try to plot a line using this data.</p>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="n">predictions</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">house</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1000</span><span class="p">,</span><span class="mi">6500</span><span class="p">):</span>
<span class="n">prediction</span> <span class="o">=</span> <span class="n">predict</span><span class="p">(</span><span class="n">house</span><span class="p">,</span> <span class="mi">5</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">predictions</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">prediction</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X</span><span class="p">,</span><span class="n">y</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1000</span><span class="p">,</span><span class="mi">6500</span><span class="p">),</span> <span class="n">predictions</span><span class="p">,</span> <span class="n">c</span> <span class="o">=</span> <span class="s2">"red"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<img alt="_images/2. KNN_36_0.png" src="_images/2. KNN_36_0.png" />
</div>
</div>
<p>As we can see, it is approximating a very good curve, but it would be better if this curve could be a straight line because :</p>
<ul class="simple">
<li><p>For a very small about of change in land size, there should be a increase/decrease in the price, but as we can see, in some areas, this isn’t the case.</p></li>
<li><p>Another problem is when we’re trying to predict a price of land size less than 1500, or more than 5000, it is giving us the constant price, because our data is limited to this area.</p></li>
</ul>
</section>
</section>
</section>
<section id="limitations-of-knn">
<h2>Limitations of KNN<a class="headerlink" href="#limitations-of-knn" title="Permalink to this headline">¶</a></h2>
<ul class="simple">
<li><p>It is totally dependent on data, as everytime we need to predict even a single point, it will require the whole dataset.</p></li>
<li><p>As we need the entire data everytime, it takes up a lot of memory.</p></li>
<li><p>Our whole algorithm is dependent on a single parameter <strong>K</strong></p></li>
</ul>
<p>But despite these limitations, KNN is a very good and easy algorithm and it is even used in today’s technologies. Like our Face Recognition system in our phones uses KNN at some level.</p>
</section>
<section id="further-readings">
<h2>Further Readings<a class="headerlink" href="#further-readings" title="Permalink to this headline">¶</a></h2>
<ul class="simple">
<li><p><a class="reference external" href="https://en.wikipedia.org/wiki/Norm_(mathematics)">https://en.wikipedia.org/wiki/Norm_(mathematics)</a></p></li>
</ul>
</section>
</section>
<script type="text/x-thebe-config">
{
requestKernel: true,
binderOptions: {
repo: "binder-examples/jupyter-stacks-datascience",
ref: "master",
},
codeMirrorConfig: {
theme: "abcdef",
mode: "python"
},
kernelOptions: {
kernelName: "python3",
path: "./."
},
predefinedOutput: true
}
</script>
<script>kernelName = 'python3'</script>
</div>
<!-- Previous / next buttons -->
<div class='prev-next-area'>
<a class='left-prev' id="prev-link" href="1.3%20Introduction%20to%20Pandas.html" title="previous page">
<i class="fas fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">Pandas</p>
</div>
</a>
<a class='right-next' id="next-link" href="3.1%20Linear%20Regression.html" title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">Linear Regression</p>
</div>
<i class="fas fa-angle-right"></i>
</a>
</div>
</div>
</div>
<footer class="footer">
<div class="container">
<p>
By Coding Blocks Pvt Ltd<br/>
© Copyright 2021.<br/>
</p>
</div>
</footer>
</main>
</div>
</div>
<script src="_static/js/index.be7d3bbb2ef33a8344ce.js"></script>
</body>
</html>