-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharray_embeddings.py
executable file
·187 lines (166 loc) · 5.29 KB
/
array_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python
# Store embeddings as STRING[] and use && (indexed) for boolean "is a match"
# and UDF overlap() for scoring.
import torch
import re, sys, os, time
from transformers import BertTokenizer, BertModel
import base36
import logging
import psycopg2
# Max number of dimensions to store in DB and use for queries (out of 768)
#TOP_N = 32
#TOP_N = 10
#TOP_N = 8
#TOP_N = 16
TOP_N = 64
# Discard the first N tokens as they have little differentiating value
"""
defaultdb=> select substring(token from 1 for 6), count(*) from text_embed group by 1 order by 2 desc;
substring | count
-----------+-------
8k al | 30
8k ez | 22
8k 69 | 2
8k in | 1
8k cd | 1
8k 2b | 1
8k 50 | 1
(7 rows)
"""
N_DISCARD = 2
# Delimiter for the base36 encoded array dimension values
DELIM = ' '
#DELIM = '~'
# Tweak minimum similarity in the DB session. Lower may be better given the LIMIT clause.
# set pg_trgm.similarity_threshold = 0.25;
# set pg_trgm.similarity_threshold = 0.1;
MIN_SIM = 0.1 # Will get set in SQL session
log_level = os.environ.get("LOG_LEVEL", "WARN").upper()
logging.basicConfig(
level=log_level
, format="[%(asctime)s] %(message)s"
, datefmt="%m/%d/%Y %I:%M:%S %p"
)
print("Log level: {} (export LOG_LEVEL=[DEBUG|INFO|WARN|ERROR] to change this)".format(log_level))
db_url = os.getenv("DB_URL")
if db_url is None:
print("DB_URL must be set")
sys.exit(1)
if len(sys.argv) < 2:
print("Usage: {} file [file2 ...]".format(sys.argv[0]))
sys.exit(1)
t0 = time.time()
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
et = time.time() - t0
logging.info("BertTokenizer: {} s".format(et))
t0 = time.time()
# Set this up once and reuse
model = BertModel.from_pretrained("bert-base-uncased", output_hidden_states = True)
model.eval()
et = time.time() - t0
logging.info("BertModel + eval: {} s".format(et))
# The fist call to this takes ~ 500 ms but subsequent calls take ~ 40 ms
def gen_embeddings(s):
rv = None
marked_text = "[CLS] " + s + " [SEP]"
tokenized_text = tokenizer.tokenize(marked_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
tokens_tensor = torch.tensor([indexed_tokens])
segments_ids = [1] * len(tokenized_text)
segments_tensors = torch.tensor([segments_ids])
with torch.no_grad():
outputs = model(tokens_tensor, segments_tensors)
hidden_states = outputs[2]
token_vecs = hidden_states[-2][0]
sentence_embedding = torch.mean(token_vecs, dim=0)
rv = sentence_embedding.tolist()
return rv
# From the list of embeddings, the 768 element array, return an array of string
# consisting of the base 36 encoded array dimension (2 chars) for the TOP_N
# elements having the largest magnitude.
def gen_embed_token(embed_list):
dims = {}
for i in range(0, len(embed_list)):
dims[base36.dumps(i).zfill(2)] = embed_list[i]
return list(dict(sorted(dims.items(), key=lambda item: abs(item[1]), reverse=True)[N_DISCARD:TOP_N + N_DISCARD]).keys())
def get_token_for_string(s):
rv = None
t0 = time.time()
embed = gen_embeddings(s)
et = time.time() - t0
logging.info("gen_embeddings: {} s".format(et))
return gen_embed_token(embed)
"""
DROP TABLE IF EXISTS text_embed;
CREATE TABLE text_embed
(
uri STRING NOT NULL
, chunk_num INT NOT NULL
, token STRING[] NOT NULL
, chunk STRING NOT NULL
, PRIMARY KEY (uri, chunk_num)
);
CREATE INDEX ON text_embed USING GIN (token);
"""
ins_sql = "INSERT INTO text_embed (uri, chunk_num, token, chunk) VALUES (%s, %s, %s, %s)"
def index_file(in_file):
text = ""
with open(in_file, mode="rt") as f:
for line in f:
text += line
in_file = re.sub(r"\./", '', in_file)
with conn.cursor() as cur:
n_chunk = 0
for s in re.split(r"\. +", text):
s = s.strip()
if (len(s) > 0):
token = get_token_for_string(s)
cur.execute(ins_sql, (in_file, n_chunk, token, s))
n_chunk += 1
conn.commit()
q_sql = """
WITH q_embed AS
(
SELECT uri, SIMILARITY(%s, token)::NUMERIC(4, 3) sim, token, chunk
FROM text_embed@text_embed_token_idx
WHERE %s %% token
ORDER BY sim DESC
LIMIT 5
)
SELECT * from q_embed where chunk ~* %s;
"""
# SELECT * from q_embed where chunk ~* '(%s)';
conn = psycopg2.connect(db_url)
# Query mode
if "-q" == sys.argv[1][0:2]:
terms = sys.argv[2:]
q = ' '.join(terms)
tok = get_token_for_string(q)
print("Query string: '{}'\nToken: '{}'\n".format(q, tok))
terms_regex = '({})'.format('|'.join(list(set(terms)))) # Remove duplicate terms via the set
print("terms_regex: {}\n".format(terms_regex))
t0 = time.time()
with conn.cursor() as cur:
cur.execute("SET pg_trgm.similarity_threshold = %s;", (MIN_SIM,)) # This does work
conn.commit()
with conn.cursor() as cur:
cur.execute(q_sql, (tok, tok, terms_regex,))
rs = cur.fetchall()
if rs is not None:
for row in rs:
(uri, sim, token, chunk) = row
print("URI: {}\nSCORE: {}\nTOKEN: {}\nCHUNK: {}\n".format(uri, sim, token, chunk))
else:
print("Empty result set\n")
et = time.time() - t0
print("SQL query time: {} ms\n".format(et * 1000))
else:
# Indexing mode
t0 = time.time()
for in_file in sys.argv[1:]:
print("Indexing file " + in_file + " now ...")
index_file(in_file)
et = time.time() - t0
logging.info("Total time: {} s".format(et))
# Close connection
conn.close()