-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
188 lines (153 loc) · 7.41 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import numpy as np
import yaml
from argparse import ArgumentParser
from datetime import datetime
import torch
import torch_geometric.nn as pyg_nn
from model.teecnet import *
from model.neural_operator import KernelNN
# from dataset.MegaFlow2D import MegaFlow2D
from megaflow.dataset.MegaFlow2D import MegaFlow2D
from dataset.MatDataset import HeatTransferDataset, BurgersDataset, HeatTransferMultiGeometryDataset
from metrics.metrics_all import *
from torch_geometric.data import Batch
def collate_fn(data_list):
data_list_l, data_list_h = zip(*data_list)
batched_data_l = Batch.from_data_list(data_list_l)
batched_data_h = Batch.from_data_list(data_list_h)
return batched_data_l, batched_data_h
def get_cur_time():
return datetime.strftime(datetime.now(), '%Y-%m-%d_%H-%M')
def checkpoint_save(model, name, epoch):
f = os.path.join(name, 'checkpoint-{:06d}.pth'.format(epoch))
torch.save(model.state_dict(), f)
print('Saved checkpoint:', f)
def checkpoint_load(model, name):
print('Restoring checkpoint: {}'.format(name))
model.load_state_dict(torch.load(name, map_location='cpu'))
epoch = int(os.path.splitext(os.path.basename(name))[0].split('-')[1])
return epoch
def initialize_model(type, in_channel, out_channel, *args, **kwargs):
# initialize model based on type, layers, and num_filters provided
if type == 'GraphSAGE':
model = pyg_nn.GraphSAGE(in_channel, kwargs['width'], kwargs['num_layers'], out_channel, dropout=0.1)
elif type == 'NeuralOperator':
model = KernelNN(kwargs['width'], 128, kwargs['num_layers'], ker_in=5, in_width=in_channel, out_width=out_channel)
elif type == 'TEECNet':
model = TEECNet(in_channel, kwargs['width'], out_channel, kwargs['num_layers'], retrieve_weight=kwargs['retrieve_weight'], num_powers=kwargs['num_powers'])
else:
raise ValueError('Unknown model type: {}'.format(type))
return model
def initialize_dataset(dataset, **kwargs):
# initialize dataset based on dataset and mode
if dataset == 'MegaFlow2D':
dataset = MegaFlow2D(root=kwargs['root'], download=False, split_scheme='circle', transform='normalize', pre_transform=None, split_ratio=[1, 0])
print('Dataset initialized')
elif dataset == 'HeatTransferDataset':
dataset = HeatTransferDataset(root=kwargs['root'], res_low=kwargs['res_low'], res_high=kwargs['res_high'], pre_transform=kwargs['pre_transform'])
print('Dataset initialized')
elif dataset == 'BurgersDataset':
dataset = BurgersDataset(root=kwargs['root'], res_low=kwargs['res_low'], res_high=kwargs['res_high'], pre_transform=kwargs['pre_transform'])
print('Dataset initialized')
elif dataset == 'HeatTransferMultiGeometryDataset':
dataset = HeatTransferMultiGeometryDataset(root=kwargs['root'], res_low=kwargs['res_low'], res_high=kwargs['res_high'], pre_transform=kwargs['pre_transform'])
print('Dataset initialized')
else:
raise ValueError('Unknown dataset: {}'.format(dataset))
return dataset
def initialize_loss(loss_type):
"""
Initialize loss function based on type provided
Input:
loss_type: string, type of loss function
Output:
loss_fn: loss function
"""
if loss_type == 'MSELoss':
return MSE()
elif loss_type == 'L1Loss':
return L1()
elif loss_type == 'VorticityLoss':
return VorticityLoss()
else:
raise ValueError('Unknown loss type: {}'.format(loss_type))
def initialize_metric(metric_type):
"""
Initialize metric function based on type provided
Input:
metric_type: string, type of metric function
Output:
metric_fn: metric function
"""
if metric_type == 'max_divergence':
return Accuracy(name='max_divergence', prediction_fn=None)
elif metric_type == 'norm_divergence':
return Accuracy(name='norm_divergence', prediction_fn=None)
elif metric_type == 'r2_score':
return Accuracy(name='r2_score', prediction_fn=None)
else:
raise ValueError('Unknown metric type: {}'.format(metric_type))
def evaluate_model(model, dataloader, logger, iteration, loss_fn, eval_metric, device, mode, checkpoint=None):
# load checkpoint if provided
if checkpoint is not None:
checkpoint_load(model, checkpoint)
model.eval()
with torch.no_grad():
avg_loss = 0
avg_metric = 0
for (batch_l, batch_h) in dataloader:
batch_l, batch_h = batch_l.to(device), batch_h.to(device)
pred = model(batch_l, batch_h)
loss = loss_fn.compute(batch_h.x, pred, batch_h.pos, batch_h.edge_index, weight=0.001)
avg_loss += loss.item()
avg_metric += eval_metric.compute(batch_h.x, pred).item()
avg_loss /= len(dataloader)
avg_metric /= len(dataloader)
if mode == 'val':
logger.add_scalar('Loss/val', avg_loss, iteration)
logger.add_scalar('Max_div/val', avg_metric, iteration)
print('-' * 72)
print('Val loss: {:.4f}, Val metric: {:.4f}'.format(avg_loss, avg_metric))
if mode == 'test':
logger.add_scalar('test_loss', avg_loss, iteration)
logger.add_scalar('test_metric', avg_metric, iteration)
print('-' * 72)
print('Test loss: {:.4f}, Test metric: {:.4f}'.format(avg_loss, avg_metric))
model.train()
return avg_loss, avg_metric
def parse_args():
parser = ArgumentParser()
parser.add_argument('--dataset', type=str, default='MegaFlow2D', help='dataset name')
parser.add_argument('--split_scheme', type=str, default='mixed', help='dataset mode')
parser.add_argument('--transform', type=str, default='None', help='dataset transform')
parser.add_argument('--dir', type=str, default='C:/research/data', help='dataset directory')
parser.add_argument('--model', type=str, default='FlowMLConvolution', help='model type')
parser.add_argument('--layers', type=int, default=3, help='number of layers')
parser.add_argument('--num_filters', type=int, nargs='+', default=[8, 16, 8], help='number of filters')
parser.add_argument('--loss', type=str, default='MSELoss', help='loss function')
parser.add_argument('--metric', type=str, default='max_divergence', help='metric function')
parser.add_argument('--epochs', type=int, default=500, help='number of epochs')
parser.add_argument('--batch_size', type=int, default=64, help='batch size')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--load_model', type=str, default=None, help='load model from checkpoint')
parser.add_argument('--config', type=str, default='config/exp_1_burger.yaml', help='directory to config file')
args = parser.parse_args()
return args
def load_yaml(path):
with open(path, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
return config
def save_yaml(config, path):
with open(path, 'w') as f:
yaml.dump(config, f, default_flow_style=False)
def train_test_split(dataset, train_ratio):
dataset_size = len(dataset)
train_size = int(dataset_size * train_ratio)
indices = list(range(dataset_size))
np.random.shuffle(indices)
train_indices = indices[:train_size]
test_indices = indices[train_size:]
train_dataset = [dataset[i] for i in train_indices]
test_dataset = [dataset[i] for i in test_indices]
return train_dataset, test_dataset