forked from nasa/pvslib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontinuous_ball_props.pvs
58 lines (49 loc) · 1.27 KB
/
continuous_ball_props.pvs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
continuous_ball_props [T: TYPE FROM real]
: THEORY % Welcome
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%| Basic properties of continuity|%
%| needed for later results |%
% related to analytic functions |%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Written By: JTS
%----- %
BEGIN
% -----%
%-------------------------------------------
%% Importing definition of continuity
%-------------------------------------------
IMPORTING analysis@continuous_functions[T]
%-------------------------------------------
%% If a continuous function is positive
% at a point, it is positive for some
% delta ball around that point
%-------------------------------------------
posball: LEMMA
FORALL(x0:T,f:[T->real]):
(continuous?(f,x0)
AND
f(x0)>0)
IMPLIES
EXISTS(delta:posreal):
FORALL(x:T):
abs(x-x0) < delta
IMPLIES
f(x) > 0
%-------------------------------------------
%% If a continuous function is negative
% at a point, it is negative for some
% delta ball around that point
%-------------------------------------------
negball: LEMMA
FORALL(x0:T,f:[T->real]):
(continuous?(f,x0)
AND
f(x0)<0)
IMPLIES
EXISTS(delta:posreal):
FORALL(x:T):
abs(x-x0) < delta
IMPLIES
f(x) < 0
%~~~ The End ~~~%
END continuous_ball_props