-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrest2api_test.py
224 lines (195 loc) · 7.44 KB
/
rest2api_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import random
import re
import sys
import requests
import httpx
MAIN = "/datasets"
MARKERS = "/markers?chrom="
ENDPOINTS = [
{
"id": "lodpeaks",
"url": "/lodpeaks?dataset={dataset_id}",
"pheno": True
}, {
"id": "rankings",
"url": "/rankings?dataset={dataset_id}",
"pheno": False
}, {
"id": "lodscan",
"url": "/lodscan?dataset={dataset_id}&id={annot_id}",
"pheno": True
}, {
"id": "lodscan_covar",
"url": "/lodscan?dataset={dataset_id}&id={annot_id}&intcovar={intcovar}",
"pheno": True
}, {
"id": "lodscanbysample",
"url": "/lodscansamples?dataset={dataset_id}&id={annot_id}&chrom={chrom}&intcovar={intcovar}",
"pheno": True
}, {
"id": "foundercoefs",
"url": "/foundercoefs?dataset={dataset_id}&id={annot_id}&chrom={chrom}&intcovar={intcovar}",
"pheno": True
}, {
"id": "foundercoefs_covar",
"url": "/foundercoefs?dataset={dataset_id}&id={annot_id}&chrom={chrom}&intcovar={intcovar}",
"pheno": True
}, {
"id": "expression",
"url": "/expression?dataset={dataset_id}&id={annot_id}",
"pheno": True
}, {
"id": "mediate",
"url": "/mediate?dataset={dataset_id}&id={annot_id}&marker_id={marker_id}",
"pheno": False
}, {
"id": "mediate_against",
"url": "/mediate?dataset={dataset_id}&id={annot_id}&marker_id={marker_id}&dataset_mediate={dataset_id_mediate}",
"pheno": False
}, {
"id": "snpassoc",
"url": "/snpassoc?dataset={dataset_id}&id={annot_id}&chrom={chrom}&location={location}",
"pheno": True
}, {
"id": "snpassoc_covar",
"url": "/snpassoc?dataset={dataset_id}&id={annot_id}&chrom={chrom}&location={location}&intcovar={intcovar}",
"pheno": True
}, {
"id": "correlation",
"url": "/correlation?dataset={dataset_id}&id={annot_id}",
"pheno": True
}, {
"id": "correlation_against",
"url": "/correlation?dataset={dataset_id}&id={annot_id}&dataset_correlate={dataset_id_correlate}",
"pheno": True
}, {
"id": "correlation_covar",
"url": "/correlation?dataset={dataset_id}&id={annot_id}&intcovar={intcovar}",
"pheno": True
}, {
"id": "correlation_against_covar",
"url": "/correlation?dataset={dataset_id}&id={annot_id}&intcovar={intcovar}&dataset_correlate={dataset_id_correlate}",
"pheno": True
}, {
"id": "correplationplot",
"url": "/correlationplot?dataset={dataset_id}&id={annot_id}&dataset_correlate={dataset_id_correlate}&id_correlate={annot_id_correlate}",
"pheno": True
}, {
"id": "correplationplot_covar",
"url": "/correlationplot?dataset={dataset_id}&id={annot_id}&dataset_correlate={dataset_id_correlate}&id_correlate={annot_id_correlate}&intcovar={intcovar}",
"pheno": True
}
]
def parse_variables(url):
elems = re.findall(r"{\w+}", url)
ret = {e[1:-1]: '' for e in elems}
return ret
def get_random_id(dataset):
if dataset["datatype"].lower() == "mrna":
annots = dataset["annotations"]
random_index = random.randint(0, len(annots) - 1)
return annots[random_index]["gene_id"]
elif dataset["datatype"].lower() == "protein":
annots = dataset["annotations"]
random_index = random.randint(0, len(annots) - 1)
return annots[random_index]["protein_id"]
elif dataset["datatype"].lower() == "phos":
annots = dataset["annotations"]
random_index = random.randint(0, len(annots) - 1)
return annots[random_index]["phos_id"]
elif dataset["datatype"][:5].lower() == "pheno":
annots = dataset["annotations"]
random_index = random.randint(0, len(annots) - 1)
return annots[random_index]["data_name"]
def get_random_intcovar(dataset):
covar_info = dataset["covar_info"]
all_intcovars = []
for covar_entry in covar_info:
if covar_entry['interactive']:
all_intcovars.append(covar_entry['sample_column'])
if len(all_intcovars) > 0:
random_index = random.randint(0, len(all_intcovars) - 1)
return all_intcovars[random_index]
return None
def get_random_chrom():
return str(random.randint(1, 19))
def get_random_nonpheno(datasets):
datasets_nonpheno = []
for dataset_id, dataset in datasets.items():
if dataset["datatype"].lower() == "mrna":
datasets_nonpheno.append(dataset)
elif dataset["datatype"].lower() == "protein":
datasets_nonpheno.append(dataset)
elif dataset["datatype"].lower() == "phos":
datasets_nonpheno.append(dataset)
random_index = random.randint(0, len(datasets_nonpheno) - 1)
return datasets_nonpheno[random_index]
def test_apis(base_url):
# grab the datasets information
datasets_req = requests.get(f'{base_url}/datasets')
datasets_data = datasets_req.json()
datasets_data = datasets_data['result']['datasets']
chrom = get_random_chrom()
# grab a marker
markers_req = requests.get(f'{base_url}{MARKERS}{chrom}')
markers_data = markers_req.json()
markers_data = markers_data['result']
marker = markers_data[random.randint(0, len(markers_data))]
marker_id = marker['marker_id']
location = marker['pos']
datasets = {}
for d in datasets_data:
datasets[d['id']] = d
for dataset_id, dataset in datasets.items():
print(dataset_id, dataset['display_name'])
annot_id = get_random_id(dataset)
intcovar = get_random_intcovar(dataset)
# find non pheno datasets, pick random
dataset_nonpheno = get_random_nonpheno(datasets)
dataset_id_mediate = dataset_nonpheno["id"]
dataset_id_correlate = dataset_nonpheno["id"]
annot_id_correlate = get_random_id(dataset_nonpheno)
is_pheno = True if dataset["datatype"][:5].lower() == "pheno" else False
params = {
"dataset_id": dataset_id,
"dataset_id_mediate": dataset_id_mediate,
"dataset_id_correlate": dataset_id_correlate,
"annot_id": annot_id,
"annot_id_correlate": annot_id_correlate,
"intcovar": intcovar,
"chrom": chrom,
"marker_id": marker_id,
"location": location
}
for endpoint in ENDPOINTS:
url = endpoint['url']
variables = parse_variables(url)
url_api = url.format(**params)
print(url_api)
if is_pheno and not endpoint["pheno"]:
# skip non pheno urls
print("SKIPPING")
continue
if intcovar is None and endpoint["url"].find("covar") >= 0:
# skip covar urls if no covariate
print("SKIPPING")
continue
api_req = requests.get(f'{base_url}{url_api}')
if api_req.status_code != 200:
try:
j = api_req.json()
msg = j["error"]
except:
msg = 'Unknown'
print(f'ERROR: {msg}')
else:
print('OK')
if __name__ == '__main__':
if len(sys.argv) != 2:
print(f'Usage: {sys.argv[0]} baseurl')
sys.exit(1)
base_url = sys.argv[1]
# strip the last '/
if base_url[-1] == '/':
base_url = base_url[:-1]
test_apis(base_url)