-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelastic.py
52 lines (43 loc) · 1.75 KB
/
elastic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import pandas as pd
import sklearn
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import ElasticNetCV
from sklearn.datasets import make_regression
direc = "C:/Users/chsue/Documents/MITyear3/6.047/GDACLAMLmethyl450/data/"
def parta():
listy = []
# chunks=pd.read_table('gdac.broadinstitute.org_LAML.Merge_methylation__humanmethylation450__jhu_usc_edu__Level_3__within_bioassay_data_set_function__data.Level_3.2016012800.0.0/LAML.methylation__humanmethylation450__jhu_usc_edu__Level_3__within_bioassay_data_set_function__data.data.txt',chunksize=1000000)
# data = pandas.read_table()
# data = data.set_index('Patient')
# data = data.set_index('Patient')
i = 0
chunksize = 4500
for chunk in pd.read_table(direc+'LAMLmethyl450.txt', chunksize=chunksize):
cg = chunk["Hybridization REF"]
chunk = chunk[chunk.columns[1::4]] # isolate beta values for each participant
chunk["Hybridization REF"] = cg
chunk = chunk.set_index("Hybridization REF")
if "Composite Element REF" in chunk.index:
chunk = chunk.drop("Composite Element REF", axis=0)
listy.append(chunk.apply(pd.to_numeric).round())
print(i)
i+=1
data = pd.concat(listy).dropna()
print("done")
# print(len(data))
# print(data.columns)
# print(len(data.columns))
dataT = data.T
# print(len(dataT))
# print(dataT.columns)
X, y = make_regression(n_features=2, random_state=0)
print("done2")
regr = ElasticNetCV(cv=5, random_state=0)
regr.fit(dataT, np.ones(len(dataT)))
print(regr.alpha_)
print(regr.intercept_)
print(regr.predict([[0, 0]]))
parta()