-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsection-2.4.tex
237 lines (190 loc) · 5.13 KB
/
section-2.4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
% Slide-n
\begin{frame}[t]{Measures of Spread}
\begin{itemize}
\item Range (max - min)
\item Inter-quartile range (IQR)
\item Standard deviation and variance
\end{itemize}
\end{frame}
% Slide-n
\begin{frame}[t]{Minimum}
\textbf{Example:} Five systolic blood pressures (mmHg) (n = 5) \\
120, 80, 90, 110, 95
\begin{itemize}
\item Minimum Value = \fbox{80}
\end{itemize}
\end{frame}
% Slide-n
\begin{frame}[t]{Maximum}
\textbf{Example:} Five systolic blood pressures (mmHg) (n = 5) \\
120, 80, 90, 110, 95
\begin{itemize}
\item Maximum Value = \fbox{120}
\end{itemize}
\end{frame}
% Slide-n
\begin{frame}[t]{Range}
\textbf{Example:} Five systolic blood pressures (mmHg) (n = 5) \\
120, 80, 90, 110, 95
$$
\fbox{Range = Maximum - Minimum}
$$
\begin{itemize}
\item Maximum = 120
\item Minimum = 80
\item $
Range = 120 - 80 = \fbox{40}
$
\end{itemize}
\end{frame}
% Slide-n
\begin{frame}[t]{Impact of Outliers}
\textbf{Example:} Five systolic blood pressures (mmHg) (n = 6) \\
120, 80, 90, 110, 95, 500
$$
\fbox{Range = Maximum - Minimum}
$$
\begin{itemize}
\item Maximum = 500
\item Minimum = 80
\item $
Range = 500 - 80 = \fbox{420}
$
\end{itemize}
\end{frame}
% Slide-n
\begin{frame}[t]{Percentiles}
\begin{itemize}
\item Divides data into 100 equal parts
\item The pth percentile P is the value that is greater than or equal
to p percent of the observations.
\item Common percentiles are
\begin{itemize}
\item[--] 25th
\item[--] 50th
\item[--] 75th
\end{itemize}
\end{itemize}
\end{frame}
% Slide-n
\begin{frame}[t]{Method for Calculating Percentiles}
\begin{itemize}
\item $P_{50}$ = $Q_2$ = middle observation
\item $P_{25}$ = $Q_1$ = middle observation of the lower half of
observations
\item $P_{75}$ = $Q_3$ = middle observation of the upper half of
observations
\end{itemize}
\end{frame}
% Slide-n
\begin{frame}[t]{Method for Calculating Percentiles}
\textbf{Odd Observations}
\begin{itemize}
\item $P_{50}$ = $Q_2$ = middle observation
\item $P_{25}$ = $Q_1$ = middle observation of the lower half of
observations
\item $P_{75}$ = $Q_3$ = middle observation of the upper half of
observations
\end{itemize}
\textbf{Even Observations}
\begin{itemize}
\item $P_{50}$ = $Q_2$ = average of the middle two observations
\item $P_{25}$ = $Q_1$ = middle observation of the lower half of n/2
observations
\item $P_{75}$ = $Q_3$ = middle observation of the upper half of n/2
observations
\end{itemize}
\end{frame}
% Slide-n
\begin{frame}[t]{Percentiles: Examples--1}
\textbf{Problem-1:} Sample height(cm) of 9 graduate students 168, 170, 150,
160, 182, 140, 175, 180, 170(odd observations)
\end{frame}
\begin{frame}[t]{Percentiles: Examples--2}
\textbf{Problem-2:} Sample height(cm) of 10 graduate students 168, 170,
150,
160, 182, 140, 175, 180, 170, 190(even observations)
\end{frame}
% Slide-n
\begin{frame}[t]{Inter Quartile Range(IQR)}
$$
IQR = Q_3 - Q_1
$$
\end{frame}
% Slide-n
\begin{frame}[t]{Why IQR?}
The primary advantage of using the interquartile range rather than the
range for the
measurement of the spread of a data set is that the interquartile range is
not sensitive to outliers.
\textbf{Example:} Five systolic blood pressures (mmHg) (n = 6) \\
120, 80, 90, 110, 95, 500
\end{frame}
% Slide-n
\begin{frame}[t]{Outlier Detection}
\textbf{Example:} Five systolic blood pressures (mmHg) (n = 6) \\
120, 80, 90, 110, 95, 500
$$
[Q_1 - 1.5IQR, Q3+1.5IQR]
$$
\end{frame}
\begin{frame}[t]{Five Number Summary}
\textbf{Dataset:} Sample height(cm) of 10 graduate students 168, 170,
150, 160, 182, 140, 175, 180, 170, 190
\begin{itemize}
\item Min
\item $Q_1$
\item $Q_2$ or Median or 50th Percentile
\item $Q_3$
\item Max
\end{itemize}
\end{frame}
% Slide-n
\begin{frame}[t]{Variance}
\textbf{Dataset:} Sample height(cm) of 10 graduate students 168, 170,
150, 160, 182, 140, 175, 180, 170, 190
\begin{enumerate}
\item Calculate the center value/mean
\item Subtract each value from the mean and square all of them
\item Calculate the sum of squared values
\item Divide the sum by the number of values
\end{enumerate}
\end{frame}
\begin{frame}[t]{Population vs Sample Variance}
\begin{center}
\begin{tabular}{|c|c|}
\hline
Population & Sample \\
\hline
$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) }{n}$ &
$ s^2 =
\frac{\sum_{i=1}^{n}
(x_i - \overline{x}) }{n-1}$ \\
\hline
$\sigma^2$ = population variance & $s^2$ = sample variance\\
\hline
\end{tabular}
\end{center}
\end{frame}
% Slide-n
\begin{frame}[t]{Standard Deviation}
\textbf{Dataset:} Sample height(cm) of 10 graduate students 168, 170,
150, 160, 182, 140, 175, 180, 170, 190
$$
SD = \sqrt{Variance}
$$
\end{frame}
% Slide-n
\begin{frame}[t]{Summary Statistics}
\textbf{Dataset:} Sample height(cm) of 10 graduate students 168, 170,
150, 160, 182, 140, 175, 180, 170, 190
\begin{itemize}
\item Min
\item $Q_1$ or 25th Percentile
\item $Q_2$ or Median or 50th Percentile
\item $Q_3$ or 75th Percentile
\item Max
\item Mean
\item Standard Deviation
\end{itemize}
\end{frame}