-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
144 lines (83 loc) · 3.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import scipy.signal
import matplotlib.pyplot as plt
import matplotlib
plt.switch_backend('agg')
import sys
import pandas as pd
import os
import pickle
from multiprocessing import Pool
from itertools import repeat
import event_detector.EventDetector as EventDetector
import utils.general_utils as general_utils
import utils.plot_utils as plot_utils
import utils.cli as cli_utils
def main():
args=cli_utils.parse_cli_args()
print('args', args)
kink_factor=args.kink_factor
raw_thrsld=args.raw_thrsld
diff_thrsld=args.diff_thrsld
shortest_evt_dur=args.shortest_evt_dur
longest_evt_dur=args.longest_evt_dur
diff_window=args.diff_window
input_file_dir=args.input
output_dir=args.output
if not os.path.exists(output_dir):
os.makedirs(output_dir)
df = pd.read_csv(input_file_dir)
timeSec=df['time'].tolist()
trace=df['values'].tolist()
samplingFreq=int(len(timeSec)/timeSec[-1])
print('samplingFreq', samplingFreq)
smth_trace=EventDetector.filtered_traces(trace, filtermode='running_window', frame_window=int(0.6*samplingFreq)) #0.1s
norm_range_smth_GC_trace ,_ ,_ = EventDetector.normalize_trace(smth_trace, frame_window=int(10*samplingFreq), mode='btwn_0and1')
evt_bin_trace, evt_startIdx_list, evt_endIdx_list = EventDetector.detect_event(norm_range_smth_GC_trace, output_dir, 'evt.png', fps=samplingFreq, \
kink_factor=kink_factor, \
evt_shortest_dur=shortest_evt_dur, \
evt_longest_dur=longest_evt_dur, \
raw_thrsld=raw_thrsld, \
diff_thrsld=diff_thrsld, \
diff_window=diff_window\
)
events_2d_list, evt_mean_trace=prep_for_evtOverlay_plot(trace, evt_startIdx_list, evt_endIdx_list, samp_freq=samplingFreq, bsl_dur=1)
plot_evt_overlay=True
if plot_evt_overlay==True:
plot_utils.plot_overlaid_events(events_2d_list, evt_mean_trace, filepath=output_dir, filename='event_overlay.png', bsl_s=1, samp_freq=samplingFreq)
save_GCevt_dic(output_dir, 'detected_events.pkl', evt_bin_trace, evt_startIdx_list, evt_endIdx_list, samplingFreq)
return
def save_GCevt_dic(save_dir, filename, evt_bin_trace, evt_startIdx_list, evt_endIdx_list, samplingFreq):
print('Saving GCevent-based.dic')
GCevt_dic={}
GCevt_dic.update({'evt_bin_trace':evt_bin_trace})
GCevt_dic.update({'evt_startIdx_list':evt_startIdx_list})
GCevt_dic.update({'evt_endIdx_list':evt_endIdx_list})
GCevt_dic.update({'samplingFreq':samplingFreq})
# GCevt_dic.update({'bsl_s':bsl_s})
# GCevt_dic.update({'GC_evt_set_list':GC_evt_set_list})
pickle.dump( GCevt_dic, open( save_dir + filename, "wb" ) )
return
def prep_for_evtOverlay_plot(trace, evt_start_idx_list, evt_end_idx_list, samp_freq=1, bsl_dur=0):
corrected_evt_start_idx=[]
corrected_evt_end_idx=[]
events_2d_list=[]
for i, idx in enumerate(evt_start_idx_list):
if idx-int(bsl_dur*samp_freq)>=0:
corrected_evt_start_idx.append(idx-int(bsl_dur*samp_freq))
corrected_evt_end_idx.append(evt_end_idx_list[i])
evt=trace[idx-int(bsl_dur*samp_freq):evt_end_idx_list[i]]
events_2d_list.append(evt)
## make all events have same length by adding nan tail
events_2d_list=sorted(events_2d_list, key=len)
longest_evt=len(events_2d_list[-1])
events_2d_list_nantail=[]
for i, evt in enumerate(events_2d_list):
len_nantail=longest_evt-len(evt)
new_evt=evt+[np.nan]*len_nantail
events_2d_list_nantail.append(new_evt)
### Make a mean trace representing the trend of all events
evt_mean_trace=np.mean(events_2d_list_nantail, axis=0)
return events_2d_list, evt_mean_trace
if __name__ == "__main__":
main()