-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
701 lines (615 loc) · 29.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
import sys
sys.path.append("./common")
sys.path.append("./auto_LiRPA")
from auto_LiRPA import BoundedModule, BoundedTensor
from auto_LiRPA.perturbations import PerturbationLpNorm
from argparser import argparser
from eps_scheduler import EpsilonScheduler
from read_config import load_config
import numpy as np
import cpprb
import re
from attacks import attack
import random
from common.wrappers import make_atari, wrap_deepmind, wrap_pytorch, make_atari_cart
from models import QNetwork, model_setup
import torch.optim as optim
import torch
from torch.nn import CrossEntropyLoss
import torch.autograd as autograd
import math
import time
import os
import argparse
from datetime import datetime
from utils import CudaTensorManager, ActEpsilonScheduler, BufferBetaScheduler, Logger, update_target, get_acrobot_eps, plot
from my_replay_buffer import ReplayBuffer, NaivePrioritizedBuffer
from common.replay_buffer import PrioritizedReplayBuffer
from async_env import AsyncEnv
from async_rb import AsyncReplayBuffer
USE_CUDA = torch.cuda.is_available()
Variable = lambda *args, **kwargs: autograd.Variable(*args, **kwargs).cuda() if USE_CUDA else autograd.Variable(*args, **kwargs)
UINTS=[np.uint8, np.uint16, np.uint32, np.uint64]
def get_logits_lower_bound(model, state, state_ub, state_lb, eps, C, beta):
ptb = PerturbationLpNorm(norm=np.inf, eps=eps, x_L=state_lb, x_U=state_ub)
bnd_state = BoundedTensor(state, ptb)
pred = model.features(bnd_state, method_opt="forward")
logits_ilb, _ = model.features.compute_bounds(C=C, IBP=True, method=None)
if beta < 1e-5:
logits_lb = logits_ilb
else:
logits_clb, _ = model.features.compute_bounds(IBP=False, C=C, method="backward", bound_upper=False)
logits_lb = beta * logits_clb + (1-beta) * logits_ilb
return logits_lb
class TimeLogger(object):
def __init__(self):
self.time_logs = {}
def log_time(self, time_id, time):
if time_id not in self.time_logs:
self.time_logs[time_id] = 0.0
self.time_logs[time_id] += time
def __call__(self, time_id, time):
self.log_time(time_id, time)
def clear(self):
self.time_logs = {}
def print(self):
print_str = ""
for t in self.time_logs:
print_str += "{}={:.4f} ".format(t, self.time_logs[t])
print(print_str + "\n")
log_time = TimeLogger()
def logits_margin(logits, y):
comp_logits = logits - torch.zeros_like(logits).scatter(1, torch.unsqueeze(y, 1), 1e10)
sec_logits, _ = torch.max(comp_logits, dim=1)
margin = sec_logits - torch.gather(logits, 1, torch.unsqueeze(y, 1)).squeeze(1)
margin = margin.sum()
return margin
def compute_td_loss(current_model, target_model, batch_size, replay_buffer, per, use_cpp_buffer, use_async_rb, optimizer, gamma, memory_mgr, robust, **kwargs):
t = time.time()
dtype = kwargs['dtype']
if per:
buffer_beta = kwargs['buffer_beta']
if use_async_rb:
if not replay_buffer.sample_available():
replay_buffer.async_sample(batch_size, buffer_beta)
res = replay_buffer.wait_sample()
replay_buffer.async_sample(batch_size, buffer_beta)
else:
res = replay_buffer.sample(batch_size, buffer_beta)
if use_cpp_buffer:
state, action, reward, next_state, done, indices, weights = res['obs'], res['act'], res['rew'], res['next_obs'], res['done'], res['indexes'], res['weights']
else:
state, action, reward, next_state, done, weights, indices = res[0], res[1], res[2], res[3], res[4], res[5], res[6]
else:
if use_async_rb:
if replay_buffer.sample_available():
replay_buffer.async_sample(batch_size)
res = replay_buffer.wait_sample()
replay_buffer.async_sample(batch_size)
else:
res = replay_buffer.sample(batch_size)
if use_cpp_buffer:
state, action, reward, next_state, done = res['obs'], res['act'], res['rew'], res['next_obs'], res['done']
else:
state, action, reward, next_state, done = res[0], res[1], res[2], res[3], res[4]
if use_cpp_buffer and not use_async_rb:
action = action.transpose()[0].astype(int)
reward = reward.transpose()[0].astype(int)
done = done.transpose()[0].astype(int)
log_time('sample_time', time.time() - t)
t = time.time()
numpy_weights = weights
if per:
state, next_state, action, reward, done, weights = memory_mgr.get_cuda_tensors(state, next_state, action, reward, done, weights)
else:
state, next_state, action, reward, done = memory_mgr.get_cuda_tensors(state, next_state, action, reward, done)
bound_solver = kwargs.get('bound_solver', 'cov')
optimizer.zero_grad()
state = state.to(torch.float)
next_state = next_state.to(torch.float)
# Normalize input pixel to 0-1
if dtype in UINTS:
state /= 255
next_state /= 255
state_max = 1.0
state_min = 0.0
else:
state_max = float('inf')
state_min = float('-inf')
beta = kwargs.get('beta', 0)
if robust and bound_solver != 'pgd':
cur_q_logits = current_model(state, method_opt="forward")
tgt_next_q_logits = target_model(next_state, method_opt="forward")
else:
cur_q_logits = current_model(state)
tgt_next_q_logits = target_model(next_state)
if robust:
eps = kwargs['eps']
cur_q_value = cur_q_logits.gather(1, action.unsqueeze(1)).squeeze(1)
tgt_next_q_value = tgt_next_q_logits.max(1)[0]
expected_q_value = reward + gamma * tgt_next_q_value * (1 - done)
'''
# Merge two states into one batch
state = state.to(torch.float)
if dtype in UINTS:
state /= 255
state_and_next_state = torch.cat((state, next_state), 0)
logits = current_model(state_and_next_state)
cur_q_logits = logits[:state.size(0)]
cur_next_q_logits = logits[state.size(0):]
tgt_next_q_value = tgt_next_q_logits.gather(1, torch.max(cur_next_q_logits, 1)[1].unsqueeze(1)).squeeze(1)
'''
if kwargs['natural_loss_fn'] == 'huber':
loss_fn = torch.nn.SmoothL1Loss(reduction='none')
loss = loss_fn(cur_q_value, expected_q_value.detach())
else:
loss = (cur_q_value - expected_q_value.detach()).pow(2)
if per:
loss = loss * weights
prios = loss + 1e-5
weights_norm = np.linalg.norm(numpy_weights)
batch_cur_q_value = torch.mean(cur_q_value)
batch_exp_q_value = torch.mean(expected_q_value)
loss = loss.mean()
td_loss = loss.clone()
if robust:
if eps < np.finfo(np.float32).tiny:
reg_loss = torch.zeros(state.size(0))
if USE_CUDA:
reg_loss = reg_loss.cuda()
if bound_solver == 'pgd':
labels = torch.argmax(cur_q_logits, dim=1).clone().detach()
adv_margin = ori_margin = logits_margin(current_model.forward(state), labels)
optimizer.zero_grad()
else:
if bound_solver != 'pgd':
sa = kwargs.get('sa', None)
pred = cur_q_logits
labels = torch.argmax(pred, dim=1).clone().detach()
c = torch.eye(current_model.num_actions).type_as(state)[labels].unsqueeze(1) - torch.eye(current_model.num_actions).type_as(state).unsqueeze(0)
I = (~(labels.data.unsqueeze(1) == torch.arange(current_model.num_actions).type_as(labels.data).unsqueeze(0)))
c = (c[I].view(state.size(0), current_model.num_actions-1, current_model.num_actions))
sa_labels = sa[labels]
lb_s = torch.zeros(state.size(0), current_model.num_actions)
if USE_CUDA:
labels = labels.cuda()
c = c.cuda()
sa_labels = sa_labels.cuda()
lb_s = lb_s.cuda()
env_id = kwargs.get('env_id','')
if env_id == 'Acrobot-v1':
eps_v = get_acrobot_eps(eps)
if USE_CUDA:
eps_v = eps_v.cuda()
else:
eps_v = eps
state_ub = torch.clamp(state + eps_v, max=state_max)
state_lb = torch.clamp(state - eps_v, min=state_min)
lb = get_logits_lower_bound(current_model, state, state_ub, state_lb, eps_v, c, beta)
hinge = kwargs.get('hinge', False)
if hinge:
reg_loss, _ = torch.min(lb, dim=1)
hinge_c = kwargs.get('hinge_c', 1)
reg_loss = torch.clamp(reg_loss, max=hinge_c)
reg_loss = - reg_loss
else:
lb = lb_s.scatter(1, sa_labels, lb)
reg_loss = CrossEntropyLoss()(-lb, labels)
else:
labels = torch.argmax(cur_q_logits, dim=1).clone().detach()
hinge_c = kwargs.get('hinge_c', 1)
adv_state = attack(current_model, state, kwargs['attack_config'], logits_margin)
optimizer.zero_grad()
adv_margin = logits_margin(current_model.forward(adv_state), labels)
ori_margin = logits_margin(current_model.forward(state), labels)
reg_loss = torch.clamp(adv_margin, min=-hinge_c)
if per:
reg_loss = reg_loss * weights
reg_loss = reg_loss.mean()
kappa = kwargs['kappa']
loss += kappa * reg_loss
loss.backward()
# Gradient clipping.
grad_norm = 0.0
max_norm = kwargs['grad_clip']
if max_norm > 0:
parameters = current_model.parameters()
for p in parameters:
grad_norm += p.grad.data.norm(2).item() ** 2
grad_norm = np.sqrt(grad_norm)
clip_coef = max_norm / (grad_norm + 1e-6)
if clip_coef < 1:
for p in parameters:
p.grad.data.mul_(clip_coef)
# update weights
optimizer.step()
nn_time = time.time() - t
log_time('nn_time', time.time() - t)
t = time.time()
if per:
replay_buffer.update_priorities(indices, prios.data.cpu().numpy())
log_time('reweight_time', time.time() - t)
res = (loss, grad_norm, weights_norm, td_loss, batch_cur_q_value, batch_exp_q_value)
if robust:
if bound_solver == 'pgd':
res += (ori_margin, adv_margin)
res += (reg_loss,)
return res
def mini_test(model, config, logger, dtype, num_episodes=10, max_frames_per_episode=30000):
logger.log('start mini test')
training_config = config['training_config']
env_params = training_config['env_params']
env_params['clip_rewards'] = False
env_params['episode_life'] = False
env_id = config['env_id']
if 'NoFrameskip' not in env_id:
env = make_atari_cart(env_id)
else:
env = make_atari(env_id)
env = wrap_deepmind(env, **env_params)
env = wrap_pytorch(env)
state = env.reset()
all_rewards = []
episode_reward = 0
seed = random.randint(0, sys.maxsize)
logger.log('reseting env with seed', seed)
env.seed(seed)
state = env.reset()
episode_idx = 1
this_episode_frame = 1
for frame_idx in range(1, num_episodes * max_frames_per_episode + 1):
state_tensor = torch.from_numpy(np.ascontiguousarray(state)).unsqueeze(0).cuda().to(torch.float32)
if dtype in UINTS:
state_tensor /= 255
action = model.act(state_tensor)[0]
next_state, reward, done, _ = env.step(action)
# logger.log(action)
state = next_state
episode_reward += reward
if this_episode_frame == max_frames_per_episode:
logger.log('maximum number of frames reached in this episode, reset environment!')
done = True
if done:
logger.log('reseting env with seed', seed)
state = env.reset()
all_rewards.append(episode_reward)
logger.log('episode {}/{} reward: {:6g}'.format(episode_idx, num_episodes, all_rewards[-1]))
episode_reward = 0
this_episode_frame = 1
episode_idx += 1
if episode_idx > num_episodes:
break
else:
this_episode_frame += 1
return np.mean(all_rewards)
def main(args):
config = load_config(args)
prefix = config['env_id']
training_config = config['training_config']
if config['name_suffix']:
prefix += config['name_suffix']
if config['path_prefix']:
prefix = os.path.join(config['path_prefix'], prefix)
if not os.path.exists(prefix):
os.makedirs(prefix)
train_log = os.path.join(prefix, 'train.log')
logger = Logger(open(train_log, "w"))
logger.log('Command line:', " ".join(sys.argv[:]))
logger.log(args)
logger.log(config)
env_params = training_config['env_params']
env_id = config['env_id']
if "NoFrameskip" not in env_id:
env = make_atari_cart(env_id)
else:
env = make_atari(env_id)
env = wrap_deepmind(env, **env_params)
env = wrap_pytorch(env)
seed = training_config['seed']
env.seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
state = env.reset()
dtype = state.dtype
logger.log("env_shape: {}, num of actions: {}".format(env.observation_space.shape, env.action_space.n))
if "NoFrameskip" in env_id:
logger.log('action meaning:', env.unwrapped.get_action_meanings()[:env.action_space.n])
robust = training_config.get('robust', False)
adv_train = training_config.get('adv_train', False)
bound_solver = training_config.get('bound_solver', 'cov')
attack_config = {}
if adv_train or bound_solver == 'pgd':
test_config = config['test_config']
attack_config = training_config["attack_config"]
adv_ratio = training_config.get('adv_ratio', 1)
if adv_train:
logger.log('using adversarial examples for training, adv ratio:', adv_ratio)
else:
logger.log('using pgd regularization training')
if robust or adv_train:
schedule_start = training_config['schedule_start']
schedule_length = training_config['schedule_length']
starting_epsilon= training_config['start_epsilon']
end_epsilon = training_config['epsilon']
epsilon_scheduler = EpsilonScheduler(training_config.get("schedule_type", "linear"), schedule_start, schedule_start+schedule_length-1, starting_epsilon, end_epsilon, 1)
max_eps = end_epsilon
model_width = training_config['model_width']
robust_model = robust and bound_solver != 'pgd'
dueling = training_config.get('dueling', True)
current_model = model_setup(env_id, env, robust_model, logger, USE_CUDA, dueling, model_width)
target_model = model_setup(env_id, env, robust_model, logger, USE_CUDA, dueling, model_width)
load_path = training_config["load_model_path"]
if load_path != "" and os.path.exists(load_path):
load_frame = int(re.findall('^.*frame_([0-9]+).pth$',load_path)[0])
logger.log('\ntrain from model {}, current frame index is {}\n'.format(load_path, load_frame))
current_model.features.load_state_dict(torch.load(load_path))
target_model.features.load_state_dict(torch.load(load_path))
else:
logger.log('\ntrain from scratch')
load_frame = 1
lr = training_config['lr']
grad_clip = training_config['grad_clip']
natural_loss_fn = training_config['natural_loss_fn']
optimizer = optim.Adam(current_model.parameters(), lr=lr, eps=training_config['adam_eps'])
# Do not evaluate gradient for target model.
for param in target_model.features.parameters():
param.requires_grad = False
buffer_config = training_config['buffer_params']
replay_initial = buffer_config['replay_initial']
buffer_capacity = buffer_config['buffer_capacity']
use_cpp_buffer = training_config["cpprb"]
use_async_rb = training_config['use_async_rb']
num_frames = training_config['num_frames']
batch_size = training_config['batch_size']
gamma = training_config['gamma']
if use_cpp_buffer:
logger.log('using cpp replay buffer')
if use_async_rb:
replay_buffer_ctor = AsyncReplayBuffer(initial_state=state, batch_size=batch_size)
else:
replay_buffer_ctor = cpprb.PrioritizedReplayBuffer
else:
logger.log('using python replay buffer')
per = training_config['per']
if per:
logger.log('using prioritized experience replay.')
alpha = buffer_config['alpha']
buffer_beta_start = buffer_config['buffer_beta_start']
buffer_beta_frames = buffer_config.get('buffer_beta_frames', -1)
if buffer_beta_frames < replay_initial:
buffer_beta_frames = num_frames - replay_initial
logger.log('beffer_beta_frames reset to ', buffer_beta_frames)
buffer_beta_scheduler = BufferBetaScheduler(buffer_beta_start, buffer_beta_frames, start_frame=replay_initial)
if use_cpp_buffer:
replay_buffer = replay_buffer_ctor(size=buffer_capacity,
# env_dict={"obs": {"shape": state.shape, "dtype": np.uint8},
env_dict={"obs": {"shape": state.shape, "dtype": dtype},
"act": {"shape": 1, "dtype": np.uint8},
"rew": {},
# "next_obs": {"shape": state.shape, "dtype": np.uint8},
"next_obs": {"shape": state.shape, "dtype": dtype},
"done": {}}, alpha=alpha, eps = 0.0) # We add eps manually in training loop
else:
replay_buffer = PrioritizedReplayBuffer(buffer_capacity, alpha=alpha)
else:
logger.log('using regular replay.')
if use_cpp_buffer:
replay_buffer =cpprb.ReplayBuffer(buffer_capacity,
# {"obs": {"shape": state.shape, "dtype": np.uint8},
{"obs": {"shape": state.shape, "dtype": dtype},
"act": {"shape": 1, "dtype": np.uint8},
"rew": {},
# "next_obs": {"shape": state.shape, "dtype": np.uint8},
"next_obs": {"shape": state.shape, "dtype": dtype},
"done": {}})
else:
replay_buffer = ReplayBuffer(buffer_capacity)
update_target(current_model, target_model)
act_epsilon_start = training_config['act_epsilon_start']
act_epsilon_final = training_config['act_epsilon_final']
act_epsilon_decay = training_config['act_epsilon_decay']
act_epsilon_method = training_config['act_epsilon_method']
if training_config.get('act_epsilon_decay_zero', True):
decay_zero = num_frames
else:
decay_zero = None
act_epsilon_scheduler = ActEpsilonScheduler(act_epsilon_start, act_epsilon_final, act_epsilon_decay, method=act_epsilon_method, start_frame=replay_initial, decay_zero=decay_zero)
# Use optimized cuda memory management
memory_mgr = CudaTensorManager(state.shape, batch_size, per, USE_CUDA, dtype=dtype)
losses = []
td_losses = []
batch_cur_q = []
batch_exp_q = []
sa = None
kappa = None
hinge = False
if robust:
logger.log('using convex relaxation certified classification loss as a regularization!')
kappa = training_config['kappa']
reg_losses = []
sa = np.zeros((current_model.num_actions, current_model.num_actions - 1), dtype = np.int32)
for i in range(sa.shape[0]):
for j in range(sa.shape[1]):
if j < i:
sa[i][j] = j
else:
sa[i][j] = j + 1
sa = torch.LongTensor(sa)
hinge = training_config.get('hinge', False)
logger.log('using hinge loss (default is cross entropy): ', hinge)
if training_config['use_async_env']:
# Create an environment in a separate process, run asychronously
async_env = AsyncEnv(env_id, result_path=prefix, draw=training_config['show_game'], record=training_config['record_game'], env_params=env_params, seed=seed)
# initialize parameters in logging
all_rewards = []
episode_reward = 0
act_epsilon = np.nan
grad_norm = np.nan
weights_norm = np.nan
best_test_reward = -float('inf')
buffer_stored_size = 0
if adv_train:
attack_count = 0
suc_count = 0
if robust and bound_solver == 'pgd':
ori_margin, adv_margin = np.nan, np.nan
start_time = time.time()
period_start_time = time.time()
# Main Loop
for frame_idx in range(load_frame, num_frames + 1):
# Step 1: get current action
frame_start = time.time()
t = time.time()
eps = 0
if adv_train or robust:
eps = epsilon_scheduler.get_eps(frame_idx, 0)
act_epsilon = act_epsilon_scheduler.get(frame_idx)
if adv_train and eps != np.nan and eps >= np.finfo(np.float32).tiny:
ori_state_tensor = torch.from_numpy(np.ascontiguousarray(state)).unsqueeze(0).cuda().to(torch.float32)
if dtype in UINTS:
ori_state_tensor /= 255
attack_config['params']['epsilon'] = eps
if random.random() < adv_ratio:
attack_count += 1
state_tensor = attack(current_model, ori_state_tensor, attack_config)
if current_model.act(state_tensor)[0] != current_model.act(ori_state_tensor)[0]:
suc_count += 1
else:
state_tensor = ori_state_tensor
action = current_model.act(state_tensor, act_epsilon)[0]
else:
with torch.no_grad():
state_tensor = torch.from_numpy(np.ascontiguousarray(state)).unsqueeze(0).cuda().to(torch.float32)
if dtype in UINTS:
state_tensor /= 255
ori_state_tensor = torch.clone(state_tensor)
action = current_model.act(state_tensor, act_epsilon)[0]
# torch.cuda.synchronize()
log_time('act_time', time.time() - t)
# Step 2: run environment
t = time.time()
if training_config['use_async_env']:
async_env.async_step(action)
else:
next_state, reward, done, _ = env.step(action)
log_time('env_time', time.time() - t)
# Step 3: save to buffer
# For asynchronous env, defer saving
if not training_config['use_async_env']:
t = time.time()
if use_cpp_buffer:
replay_buffer.add(obs=state, act=action, rew=reward, next_obs=next_state, done=done)
else:
replay_buffer.push(state, action, reward, next_state, done)
log_time('save_time', time.time() - t)
if use_cpp_buffer:
buffer_stored_size = replay_buffer.get_stored_size()
else:
buffer_stored_size = len(replay_buffer)
beta = np.nan
buffer_beta = np.nan
t = time.time()
if buffer_stored_size > replay_initial:
if training_config['per']:
buffer_beta = buffer_beta_scheduler.get(frame_idx)
if robust:
convex_final_beta = training_config['convex_final_beta']
convex_start_beta = training_config['convex_start_beta']
beta = (max_eps - eps * (1.0 - convex_final_beta)) / max_eps * convex_start_beta
res = compute_td_loss(current_model, target_model, batch_size, replay_buffer, per, use_cpp_buffer, use_async_rb, optimizer, gamma, memory_mgr, robust, buffer_beta=buffer_beta, grad_clip=grad_clip, natural_loss_fn=natural_loss_fn, eps=eps, beta=beta, sa=sa, kappa=kappa, dtype=dtype, hinge=hinge, hinge_c=training_config.get('hinge_c', 1), env_id=env_id, bound_solver=bound_solver, attack_config=attack_config)
loss, grad_norm, weights_norm, td_loss, batch_cur_q_value, batch_exp_q_value = res[0], res[1], res[2], res[3], res[4], res[5]
if robust:
reg_loss = res[-1]
reg_losses.append(reg_loss.data.item())
if bound_solver == 'pgd':
ori_margin, adv_margin = res[-3].data.item(), res[-2].data.item()
losses.append(loss.data.item())
td_losses.append(td_loss.data.item())
batch_cur_q.append(batch_cur_q_value.data.item())
batch_exp_q.append(batch_exp_q_value.data.item())
log_time('loss_time', time.time() - t)
# Step 2: run environment (async)
t = time.time()
if training_config['use_async_env']:
next_state, reward, done, _ = async_env.wait_step()
log_time('env_time', time.time() - t)
# Step 3: save to buffer (async)
if training_config['use_async_env']:
t = time.time()
if use_cpp_buffer:
replay_buffer.add(obs=state, act=action, rew=reward, next_obs=next_state, done=done)
else:
replay_buffer.push(state, action, reward, next_state, done)
log_time('save_time', time.time() - t)
# Update states and reward
t = time.time()
state = next_state
episode_reward += reward
if done:
if training_config['use_async_env']:
state = async_env.reset()
else:
state = env.reset()
all_rewards.append(episode_reward)
episode_reward = 0
log_time('env_time', time.time() - t)
# All kinds of result logging
if frame_idx % training_config['print_frame'] == 0 or frame_idx==num_frames or (robust and abs(frame_idx-schedule_start) < 5) or abs(buffer_stored_size-replay_initial) < 5:
logger.log('\nframe {}/{}, learning rate: {:.6g}, buffer beta: {:.6g}, action epsilon: {:.6g}'.format(frame_idx, num_frames, lr, buffer_beta, act_epsilon))
logger.log('total time: {:.2f}, epoch time: {:.4f}, speed: {:.2f} frames/sec, last total loss: {:.6g}, avg total loss: {:.6g}, grad norm: {:.6g}, weights_norm: {:.6g}, latest episode reward: {:.6g}, avg 10 episode reward: {:.6g}'.format(
time.time() - start_time,
time.time() - period_start_time,
training_config['print_frame'] / (time.time() - period_start_time),
losses[-1] if losses else np.nan,
np.average(losses[:-training_config['print_frame']-1:-1]) if losses else np.nan,
grad_norm, weights_norm,
all_rewards[-1] if all_rewards else np.nan,
np.average(all_rewards[:-11:-1]) if all_rewards else np.nan))
logger.log('last td loss: {:.6g}, avg td loss: {:.6g}'.format(
td_losses[-1] if td_losses else np.nan,
np.average(td_losses[:-training_config['print_frame']-1:-1]) if td_losses else np.nan))
logger.log('last batch cur q: {:.6g}, avg batch cur q: {:.6g}'.format(
batch_cur_q[-1] if batch_cur_q else np.nan,
np.average(batch_cur_q[:-training_config['print_frame']-1:-1]) if batch_cur_q else np.nan))
logger.log('last batch exp q: {:.6g}, avg batch exp q: {:.6g}'.format(
batch_exp_q[-1] if batch_exp_q else np.nan,
np.average(batch_exp_q[:-training_config['print_frame']-1:-1]) if batch_exp_q else np.nan))
if robust:
logger.log('current input epsilon: {:.6g}'.format(eps))
if bound_solver == 'pgd':
logger.log('last logit margin: ori: {:.6g}, adv: {:.6g}'.format(ori_margin, adv_margin))
else:
logger.log('current bound beta: {:.6g}'.format(beta))
logger.log('last cert reg loss: {:.6g}, avg cert reg loss: {:.6g}'.format(
reg_losses[-1] if reg_losses else np.nan,
np.average(reg_losses[:-training_config['print_frame']-1:-1]) if reg_losses else np.nan))
logger.log('current kappa: {:.6g}'.format(kappa))
if adv_train:
logger.log('current attack epsilon (same as input epsilon): {:.6g}'.format(eps))
diff = ori_state_tensor - state_tensor
diff = np.abs(diff.data.cpu().numpy())
logger.log('current Linf distortion: {:.6g}'.format(np.max(diff)))
logger.log('this batch attacked: {}, success: {}, attack success rate: {:.6g}'.format(attack_count, suc_count, suc_count*1.0/attack_count if attack_count>0 else np.nan))
attack_count = 0
suc_count = 0
logger.log('attack stats reseted.')
period_start_time = time.time()
log_time.print()
log_time.clear()
if frame_idx % training_config['save_frame'] == 0 or frame_idx==num_frames:
plot(frame_idx, all_rewards, losses, prefix)
torch.save(current_model.features.state_dict(), '{}/frame_{}.pth'.format(prefix, frame_idx))
if frame_idx % training_config['update_target_frame'] == 0:
update_target(current_model, target_model)
if frame_idx % training_config.get('mini_test', 100000) == 0 and ((robust and beta == 0) or (not robust and frame_idx * 1.0 / num_frames >= 0.8)):
test_reward = mini_test(current_model, config, logger, dtype)
logger.log('this test avg reward: {:6g}'.format(test_reward))
if test_reward >= best_test_reward:
best_test_reward = test_reward
logger.log('new best reward {:6g} achieved, update checkpoint'.format(test_reward))
torch.save(current_model.features.state_dict(), '{}/best_frame_{}.pth'.format(prefix, frame_idx))
log_time.log_time('total', time.time() - frame_start)
if __name__ == "__main__":
args = argparser()
main(args)