-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathselector-model-devi.yml
131 lines (110 loc) · 5.09 KB
/
selector-model-devi.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# This is the configuration file for select stage with model deviation based selector.
workflow:
select:
model_devi:
# The structure
# whose max_devi_f is less than f_trust_lo will be considered as good.
# whose max_devi_f is larger than f_trust_hi will be considered as poor.
# whose max_devi_f is between f_trust_lo and f_trust_hi will be considered as decent.
# Only the decent structures will be used selected as new training set.
f_trust_lo: 0.4
f_trust_hi: 0.6
# Optional, the quantile of model_devi score to select the structure
# for next round of exploration
new_explore_system_q: 0.25
# Optional, limit max decent per trajectory
# Default: -1 (no limit)
max_decent_per_traj: 1
# Optional, number of workers for parallel computing, set it to 1 for debug.
# Default: 4
workers: 1
# Optional, filter structures by condition defined by lambda string
# The only input argument of lambda function is `ase.Atoms`
# The following local variable can be used in the expression:
# ssw_energy_quantile, ssw_energy_max, ssw_energy_min
# e.g: "lambda x: x.info['ssw_energy'] < ssw_energy_quantile(0.25)"
screening_fn:
# Optional, select most dissimilar structures by clustering.
# If it is None, this stage will be skipped.
#
# The process of this stage is as follow:
#
# 1. Get global descriptors of structures, use methods like SOAP, ACSF, etc.
# 2. Reduce the dimension of global descriptors, use methods like PCA, t-SNE, etc.
# 3. Cluster the reduced global descriptors, use methods like DBSCAN, etc.
# 4. Select the most dissimilar structures from each cluster.
#
# You can set it to {} if you want to use default options.
# or you can specify the params directly as the follow
asap_options:
# Optional, limit the number of structures selected from each cluster.
# Default: 1
# Set it to 0 if you want keep all structures.
limit_per_cluster: 1
# Optional, whether to sort the structures by ssw_energy.
# Default: false
sort_by_ssw_energy: true
# Optional, specify the method to get global descriptors.
# Only one of soap, acsf and cm need to be set.
# Default: soap
# Remember to remove the unused ones for the configuration file.
descriptor:
# Optional, use SOAP descriptor.
soap:
# Optional, the preset configuration provided by asaplib,
# includes: smart, minimal, longrangeb
# You can skip the other params if preset is not None
preset:
# Use can also specify the params directly.
# The following params will take effect only when preset is None.
# those params following the convention of dscribe
# https://singroup.github.io/dscribe/latest/tutorials/descriptors/soap.html
r_cut: 3.5
n_max: 6
l_max: 6
sigma: 0.5
crossover: false
rbf: gto
reducer_type: average
element_wise: false
zeta: 1
# Optional, use ACSF descriptor.
acsf:
# Optional, the preset configuration provided by asaplib,
# includes: smart, minimal, longrangeb
# You can skip the other params if preset is not None
preset:
# those params following the convention of dscribe
# https://singroup.github.io/dscribe/latest/tutorials/descriptors/acsf.html
r_cut: 3.5
reducer_type: average
element_wise: false
zeta: 1
# Optional, use CM descriptor.
# No params need to be specified, just set it to {} if you want to use it.
cm: {}
# Optional, specify the method to reduce the dimension of global descriptors.
# Only one of pca, tsne, umap and autoencoder need to be set.
# Default: pca
# The params are used by the asaplib
# Remember to remove the unused ones for the configuration file.
dim_reducer:
# Optional, use PCA and specify the params.
pca:
type: PCA
parameter:
n_components: 3
scalecenter: true
# Optional, specify the method to cluster the reduced global descriptors.
# Only one of dbscan and laio_db need to be set.
# Default: dbscan
# Remember to remove the unused ones for the configuration file.
cluster:
# Optional, use DBSCAN and specify the params.
# Set it to {} if you want to use default params.
# Or you can specify the params directly as the follow
dbscan:
eps:
min_samples: 2
# Optional, use LaioDB, no params need to be specified.
laiodb: {}