-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdknn.py
349 lines (310 loc) · 12.4 KB
/
dknn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
'''
Define Deep k-Nearest Neighbor object
'''
import numpy as np
import torch.nn.functional as F
import faiss
from lib.faiss_utils import *
class DKNNL2(object):
"""
An object that we use to create and store a deep k-nearest neighbor (DkNN)
that uses Euclidean distance as a metric.
"""
def __init__(self, model, x_train, y_train, x_cal, y_cal, layers, k=75,
num_classes=10, ys_train=None, cosine=False, device='cuda'):
"""
Parameters
----------
model : torch.nn.Module
neural network model that extracts the representations
x_train : torch.tensor
a tensor of training samples with shape (num_train_samples, ) +
input_shape
y_train : torch.tensor
a tensor of labels corresponding to samples in x_train with shape
(num_train_samples, )
x_cal : torch.tensor
a tensor of calibrating samples used to calibrate credibility score
as described in DkNN paper (Papernot & McDaniel '18)
y_cal : torch.tensor
a tensor of labels corresponding to x_cal
layers : list of str
a list of layer names that are used in DkNN
k : int, optional
the number of neighbors to consider, i.e. k in the kNN part
(default is 75)
num_classes : int, optional
the number of classes (default is 10)
ys_train : torch.tensor, optional
specify soft labels for training samples. Must have shape
(num_train_samples, num_classes). (default is None)
cosine : bool, optional
If True, use cosine distance. Else use Euclidean distance.
(default is False)
device : str, optional
name of the device model is on (default is 'cuda')
"""
self.model = model
self.cosine = cosine
self.x_train = x_train
self.y_train = y_train
self.ys_train = ys_train
self.layers = layers
self.k = k
self.num_classes = num_classes
self.device = device
self.indices = []
self.activations = {}
# register hook to get representations
layer_count = 0
for name, module in self.model.named_children():
# if layer name is one of the names specified in self.layers,
# register a hook to extract the activation at every forward pass
if name in self.layers:
module.register_forward_hook(self._get_activation(name))
layer_count += 1
assert layer_count == len(layers)
reps = self.get_activations(x_train, requires_grad=False)
for layer in layers:
# build faiss index from the activations by layer
index = self._build_index(reps[layer].cpu())
self.indices.append(index)
# set up calibration for credibility score
y_pred = self.classify(x_cal)
self.A = np.zeros((x_cal.size(0), )) + self.k * len(self.layers)
for i, (y_c, y_p) in enumerate(zip(y_cal, y_pred)):
self.A[i] -= y_p[y_c]
def _get_activation(self, name):
"""Hook used to get activation from specified layer name
Parameters
----------
name : str
name of the layer to collect the activations
Returns
-------
hook
the hook function
"""
def hook(model, input, output):
self.activations[name] = output
return hook
def _build_index(self, xb):
"""Build faiss index from a given set of samples
Parameters
----------
xb : torch.tensor
tensor of samples to build the search index, shape is
(num_samples, dim)
Returns
-------
index
faiss index built on the given samples
"""
d = xb.size(-1)
# brute-force search on GPU (GPU generally doesn't have enough memory)
# res = faiss.StandardGpuResources()
# index = faiss.GpuIndexFlatIP(res, d)
# brute-force search on CPU
index = faiss.IndexFlatL2(d)
index.add(xb.detach().cpu().numpy())
return index
def get_activations(self, x, batch_size=500, requires_grad=True,
device=None):
"""Get activations at each layer in self.layers
Parameters
----------
x : torch.tensor
tensor of input samples, shape = (num_samples, ) + input_shape
batch_size : int, optional
batch size (Default is 500)
requires_grad : bool, optional
whether or not to require gradients on the activations
(Default is False)
device : str
name of the device the model is on (Default is None)
Returns
-------
activations : dict
dict of torch.tensor containing activations
"""
if device is None:
device = self.device
# first run through to set an empty tensor of an appropriate size
with torch.no_grad():
num_total = x.size(0)
num_batches = int(np.ceil(num_total / batch_size))
activations = {}
self.model(x[0:1].to(device))
for layer in self.layers:
size = torch.tensor(self.activations[layer].size()[1:]).prod()
activations[layer] = torch.empty((num_total, size),
dtype=torch.float32,
device=device,
requires_grad=False)
with torch.set_grad_enabled(requires_grad):
for i in range(num_batches):
begin, end = i * batch_size, (i + 1) * batch_size
# run a forward pass, the attribute self.activations get set
# to activations of the current batch
self.model(x[begin:end].to(device))
# copy the extracted activations to the dictionary of
# tensor allocated earlier
for layer in self.layers:
act = self.activations[layer]
act = act.view(act.size(0), -1)
if self.cosine:
act = F.normalize(act, 2, 1)
activations[layer][begin:end] = act
return activations
def get_neighbors(self, x, k=None, layers=None):
"""Find k neighbors of x at specified layers
Parameters
----------
x : torch.tensor
samples to query, shape (num_samples, ) + input_shape
k : int, optional
number of neighbors (Default is self.k)
layers : list of str
list of layer names to find neighbors on (Default is self.layers)
Returns
-------
output : list
list of len(layers) tuples of distances and indices of k neighbors
"""
if k is None:
k = self.k
if layers is None:
layers = self.layers
output = []
reps = self.get_activations(x, requires_grad=False)
for layer, index in zip(self.layers, self.indices):
if layer in layers:
rep = reps[layer].detach().cpu().numpy()
D, I = index.search(rep, k)
# D, I = search_index_pytorch(index, reps[layer], k)
# uncomment when using GPU
# res.syncDefaultStreamCurrentDevice()
output.append((D, I))
return output
def classify(self, x, k=None):
"""Find number of k-nearest neighbors in each class
Arguments
---------
x : torch.tensor
samples to query, shape is (num_samples, ) + input_shape
k : int, optional
number of neighbors to check (Default is None)
Returns
-------
class_counts : np.array
array of numbers of neighbors in each class, shape is
(num_samples, self.num_classes)
"""
nb = self.get_neighbors(x, k=k)
class_counts = np.zeros((x.size(0), self.num_classes))
for (_, I) in nb:
y_pred = self.y_train.cpu().numpy()[I]
for i in range(x.size(0)):
class_counts[i] += np.bincount(
y_pred[i], minlength=self.num_classes)
return class_counts
def classify_soft(self, x, k=None):
"""Use soft lable for classification
Arguments
---------
x : torch.tensor
samples to query, shape is (num_samples, ) + input_shape
k : int, optional
number of neighbors to check (Default is None)
Returns
-------
class_counts : np.array
array of numbers of neighbors in each class, shape is
(num_samples, self.num_classes)
"""
nb = self.get_neighbors(x, k=k)
ys = np.zeros((x.size(0), self.num_classes))
for (_, I) in nb:
for i in range(x.size(0)):
ys[i] += self.ys_train.cpu().numpy()[I[i]].mean(0)
return ys
def predict(self, x):
"""Predict label of single sample x"""
return self.classify(x.unsqueeze(0))[0].argmax()
# def classify_soft(self, x, layer=None, k=None):
# """(Deprecated) Find average of exponential of distance from the query
# points to neighbors of each class.
#
# Parameters
# ----------
# x : torch.tensor
# samples to query, shape (num_samples, ) + input_shape
# k : int, optional
# number of neighbors (Default is self.k)
# layers : list of str
# list of layer names to find neighbors on (Default is self.layers)
#
# Returns
# -------
# logits : np.array
# array of average of exponential of distance to neighbors in each
# class, shape is (num_samples, self.num_classes)
# """
# temp = 2e-2
# if layer is None:
# layer = self.layers[-1]
# if k is None:
# k = self.k
# with torch.no_grad():
# train_reps = self.get_activations(self.x_train)[layer]
# train_reps = train_reps.view(self.x_train.size(0), -1)
# reps = self.get_activations(x)[layer]
# reps = reps.view(x.size(0), -1)
# logits = torch.empty((x.size(0), self.num_classes))
# for i, rep in enumerate(reps):
# dist = (((rep.view(1, -1) - train_reps)**2).sum(1) / temp).exp()
# # cos = ((rep.unsqueeze(0) * train_reps).sum(1) / temp).exp()
# # cos = (rep.unsqueeze(0) * train_reps).sum(1)
# for label in range(self.num_classes):
# logits[i, label] = dist[self.y_train == label].mean()
# # ind = self.y_train == label
# # logits[i, label] = cos[ind].topk(k)[0].mean()
# return logits
def credibility(self, class_counts):
"""compute credibility of samples given their class_counts"""
alpha = self.k * len(self.layers) - np.max(class_counts, 1)
cred = np.zeros_like(alpha)
for i, a in enumerate(alpha):
cred[i] = np.sum(self.A >= a)
return cred / self.A.shape[0]
def find_nn_diff_class(self, x, label):
"""Find the nearest neighbor of x that has a different class from the
given label.
Parameters
----------
x : torch.tensor
tensor of query samples, shape is (num_samples, ) + input_shape
label : torch.tensor
tensor of the labels, shape is (num_samples, )
Returns
-------
nn : np.array
array of indices of the nearest neighbor of each sample in x that
has a different label from the one specified
"""
nn = np.zeros(x.size(0))
for i in range(x.size(0)):
found_diff_class = False
k = 1e2
# find k nearest neighbors at a time, keep increasing k until at
# least one sample of a different class is found
while not found_diff_class:
_, I = self.get_neighbors(x[i].unsqueeze(0), k=int(k))[0]
I = I[0]
ind = np.where(label[i] != self.y_train[I])[0]
if len(ind) != 0:
nn[i] = I[ind[0]]
found_diff_class = True
else:
k *= 10
return nn