-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwaspecCLL.f90
executable file
·528 lines (454 loc) · 15.9 KB
/
waspecCLL.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
IMPLICIT DOUBLE PRECISION (a-h,o-z)
! Supplementary material of Moretti, Le Losq, Neuville, Geochimica Cosmochimica 2014
! Original code written by Roberto Moretti in F77
! Code converted by Charles Le Losq in F90
! Date: 2014-02-12 Time: 11:12:39
REAL :: k
PARAMETER (ndi=600)
! Declaration of variable in double precision
INTEGER, PARAMETER :: DP = KIND(0.0D0)
REAL(KIND=DP) :: x(49), delta(ndi), tcent(ndi), o(ndi), o1(ndi), o3(ndi), o4(ndi)
real(KIND=DP) :: zcat(13), xcat(ndi,13), aossi(ndi), ersta(ndi), z(13), y(13)
real(KIND=DP) :: tkelv(ndi), pbar(ndi), rappox(ndi), totcat(ndi), totani(ndi)
real(KIND=DP) :: xti(ndi), xmn(ndi), xfe(ndi), xmg(ndi), xca(ndi), xna(ndi)
real(KIND=DP) :: xk(ndi), xsi(ndi), xal(ndi), poss(ndi,13), xossi(ndi), redox(ndi)
real(KIND=DP) :: acidic(ndi), w(ndi), ah(ndi), somm(ndi), som(ndi), aossiz(ndi)
real(KIND=DP) :: xh(ndi), xwd(ndi), xoh(ndi), xcat0(ndi), xohz(ndi), xw(ndi)
real(KIND=DP) :: ERR(ndi), dv(ndi), delv(ndi), wmol(ndi), watmol(ndi), dx(ndi)
real(KIND=DP) :: xleft(ndi), partw(ndi), wwmol(ndi), wattot(ndi), freeox(ndi)
real(KIND=DP) :: prot(ndi), ohtrue(ndi), pipp(ndi), cost22(ndi), cost20(ndi)
real(KIND=DP) :: xmol(ndi,13), cri(ndi)
OPEN (UNIT=8,FILE='INPUT.txt',STATUS='old')
OPEN (UNIT=19,FILE='OUTPUT.txt',STATUS='UNKNOWN')
! attenzione basicity moderating parameters per il calcolo della
DATA x/2.913128,-1723.12,0.856683,-2033.56,0.,0.,0.,0.,0., &
0.645,-3.06217395577529,872.441431890575,0.,1.4,0.78,0.,0., &
-132.,0.,2.,0.,4.545,2.92,1.37,1.35,2.5,0.,0.5,-1.,-1.5, &
0.,1.41600470139180,-3568.68070901824,0.,0.,-2.80718661275843, &
0.,4.68206041948470,0.,-1.3,0.,0.,0.,-2.14703618087306, &
-2532.05418107778,0.,0.,0.,0./
DATA z/2.09,1.54,2.5,1.67,2.09,1.82,1.354,1.40,1.,1.28,.87, .71,2.5/
DATA y/60.085,79.899,141.94,101.96,159.69,151.99,71.846, &
70.937,56.079,40.311,61.979,94.203,18.015/
DATA zcat/1.,1.,2.,2.,2.,2.,1.,1.,1.,1.,2.,2.,2./
! Chemical composition of melt in oxyde wt%
! (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)(12)(13)
! SiO2 TiO2 P2O5 Al2O3 Fe2O3 Cr2O3 FeO MnO CaO MgO Na2O K2O H2O
READ (8,*) ncomp,kympa
READ (8,*) ! this is to skype the header line with compositions
WRITE (*,*) ncomp
DO i=1,ncomp
xossi(i)=-12
READ (8,*) tcent(i),pbar(i),poss(i,1),poss(i,2), &
poss(i,4),poss(i,5),poss(i,6),poss(i,7),poss(i,8),poss(i,10), &
poss(i,9),poss(i,11),poss(i,12),poss(i,3), poss(i,13),wwmol(i)
tkelv(i)=tcent(i)+273.15
IF (poss(i,5) <= 0.) poss(i,5)=0.00001
IF (poss(i,7) <= 0.) poss(i,7)=0.00001
zum=0.
DO jk=1,12
zum=zum+poss(i,jk)
END DO
zym=0.
DO kj=1,12
poss(i,kj)=poss(i,kj)*(100.-poss(i,13))/zum
zym=zym+poss(i,kj)
END DO
zym=zym+poss(i,13)
IF (DABS(zym-100.) >= 0.00001) PAUSE ! consistency check
! calcola le proporzioni molari a 100% catione e ossido
d=0
dd=0
DO j=1,13
xcat(i,j)=poss(i,j)*zcat(j)/y(j)
d=d+xcat(i,j)
dd=dd+poss(i,j)/y(j)
xmol(i,j)=poss(i,j)/y(j)
END DO
som(i)=d
xcat0(i)=xcat(i,13)
! considero tutto H2O come OH (o H!)
dd=dd-poss(i,13)/y(13)
xw(i)=2.*poss(i,13)/y(13)
dd=dd+xw(i)
somm(i)=dd
DO j=1,13
xcat(i,j)=xcat(i,j)/d
xmol(i,j)=xmol(i,j)/dd
END DO
END DO
DO i=1,ncomp
k=0
e=0
u=0
v=0
! Inizia il ricalcolo per H+ e OH-
! OH- anione libero di H2O sulla matrice anionica
! H+ entra nel computo della depolimerizzazione e non ci interessa
! per niente se poi si rimette con OH- dando H2O molecolare o con O-
! dando l'OH di Fraser che chiude le terminazioni polimeriche.
! Di seguito approssimiamo i volumi di H+ e O2- dai raggi ionici...
frit=0.
nit=50
kflag=0.
DO jk=1,nit
xcat(i,1)=poss(i,1)*zcat(1)/y(1)
xcat(i,3)=poss(i,3)*zcat(3)/y(3)
xcat(i,4)=poss(i,4)*zcat(4)/y(4)
xcat(i,5)=poss(i,5)*zcat(5)/y(5)
xcat(i,6)=poss(i,6)*zcat(6)/y(6)
xcat(i,7)=poss(i,7)*zcat(7)/y(7)
xcat(i,2)=poss(i,2)*zcat(2)/y(2)
xcat(i,13)=poss(i,13)*zcat(13)/y(13)
xcat(i,8)=poss(i,8)*zcat(8)/y(8)
xcat(i,9)=poss(i,9)*zcat(9)/y(9)
xcat(i,10)=poss(i,10)*zcat(10)/y(10)
xcat(i,11)=poss(i,11)*zcat(11)/y(11)
xcat(i,12)=poss(i,12)*zcat(12)/y(12)
xcat(i,1)=xcat(i,1)/som(i)
xcat(i,3)=xcat(i,3)/som(i)
xcat(i,4)=xcat(i,4)/som(i)
xcat(i,5)=xcat(i,5)/som(i)
xcat(i,6)=xcat(i,6)/som(i)
xcat(i,2)=xcat(i,2)/som(i)
xcat(i,7)=xcat(i,7)/som(i)
xcat(i,8)=xcat(i,8)/som(i)
xcat(i,9)=xcat(i,9)/som(i)
xcat(i,10)=xcat(i,10)/som(i)
xcat(i,11)=xcat(i,11)/som(i)
xcat(i,12)=xcat(i,12)/som(i)
xcat(i,13)=xcat(i,13)/som(i)
xsi(i)=xcat(i,1)*4.
xal(i)=xcat(i,4)*3.
xsi(i)=xsi(i)/(xsi(i)+xal(i))
xal(i)=xal(i)/(xsi(i)+xal(i))
xti(i)=xcat(i,2)*4.
xna(i)=xcat(i,11)
xk(i)=xcat(i,12)
xca(i)=xcat(i,9)*2.
xmg(i)=xcat(i,10)*2.
xmn(i)=xcat(i,8)*2.
xfe(i)=xcat(i,7)*2.
totale=xti(i)+xna(i)+xk(i)+xca(i)+xmg(i)+xmn(i)+xfe(i)
xti(i)=xti(i)/totale
xna(i)=xna(i)/totale
xk(i)=xk(i)/totale
xca(i)=xca(i)/totale
xmg(i)=xmg(i)/totale
xmn(i)=xmn(i)/totale
xfe(i)=xfe(i)/totale
xfe(i)=xfe(i)+xmn(i)
aossiz(i)=aossi(i)
IF (jk == 1) THEN
aossiz(i)=1.
xoh(i)=xcat0(i)
END IF
xh(i)=xcat0(i)-xoh(i)
xohz(i)=xoh(i)
xcat(i,13)=xh(i)/som(i)
xwd(i)=xoh(i)/som(i)
! bilancio cariche creazione complessi MAl4+, ecc.
w(i)=3.0*xcat(i,6)+2.0*(xcat(i,7)+xcat(i,8)+xcat(i,9)+xcat(i,10)) &
+xcat(i,11)+xcat(i,12)+xcat(i,13)+xcat(i,3)+4.0*xcat(i,2)
IF (xcat(i,4) > w(i)) GO TO 540
xfor=xcat(i,1)+xcat(i,4)/2.0
w(i)=w(i)-xcat(i,4)
xallu=xcat(i,4)/2.0
xcat(i,4)=0.
GO TO 590
540 u=xcat(i,4)-w(i)
xfor=xcat(i,1)+w(i)/2.0
xcat(i,4)=u
xallu=xcat(i,4)/2.0
w(i)=0.
! write (*,*) 'ci casco per il composto ',i
GO TO 680
590 IF (xcat(i,5) > w(i)) GO TO 640
xfor=xfor+xcat(i,5)/2.0
w(i)=w(i)-xcat(i,5)
xfe2o3=xcat(i,5)/2.0
xcat(i,5)=0.
GO TO 680
640 v=xcat(i,5)-w(i)
xfor=xfor+w(i)/2.0
xcat(i,5)=v
xfe2o3=w(i)/2.0
w(i)=0.
! write (*,*) 'ci casco per il composto ',i
680 xfor=xfor+xcat(i,3)/2.0
! Compute optic basicity of network former (z prefissati)
basfor=xcat(i,1)*z(1)/xfor+xcat(i,3)*z(3)/xfor+xallu*z(4)/xfor+ &
xfe2o3*z(5)/xfor
! Compute proportion of network modifiers and the
! associated basicity
xmod=0.0
DO ij=2,13
xmod=xmod+xcat(i,ij)/zcat(ij)
END DO
basmod=0.0
DO ij=2,12
xcat(i,ij)=xcat(i,ij)/(zcat(ij)*xmod)
! basicit ottica prefissata
basmod=basmod+xcat(i,ij)*z(ij)
END DO
xcat(i,13)=xcat(i,13)/(zcat(13)*xmod)
basmod=basmod+xcat(i,13)*x(26)
k=DEXP(((basmod-basfor)/0.2145)-1.1445+0.*(pbar(i)-1)/tkelv(i))
a=1.0-4.0*k
xcat(i,1)=xfor/(xfor+xmod)
acidic(i)=xcat(i,1)
e=1.0-acidic(i)
totcat(i)=e
atoop=-a
btoop=2.0+2.0*acidic(i)
ctoop=8.0*acidic(i)*(acidic(i)-1.0)
o(i)=(-btoop+DSQRT(btoop**2.-4.0*atoop*ctoop))/(2.0*atoop)
! calcola moli di O2-, Oø e polianioni
! deriva la frazione di O2- sulla matrice anionica
! O1 il numero di O=, O3 il numero di Oø, O(i) il numero di O-
o1(i)=1.0-acidic(i)-o(i)/2.0
o3(i)=(4.0*acidic(i)-o(i))/2.0
o4(i)=o(i)/(o(i)+o3(i)+acidic(i))
s=DEXP(-1.7165*DLOG(o4(i))+2.8776)
s1=acidic(i)/s
o2=o1(i)/(o1(i)+s1+xwd(i))
totani(i)=o1(i)+s1+xwd(i)
aossi(i)=o2
ah(i)=totcat(i)/totani(i)
! I volumi sotto sono in joule/bar ...fattore 0.1...
! Raggi ionici di Shannon
voh=(4./3.)*3.14159*((x(14)+x(21)+x(7)/1.d6* (tkelv(i)-298.15))**3)
voh=voh*0.6022045
vo2=(4./3.)*3.14159*((x(14)+x(7)/1.d6*(tkelv(i)-298.15))**3)
vo2=vo2*0.6022045
vh=(4./3.)*3.14159*((x(21)+x(16)/1.d6*(tkelv(i)-298.15))**3)
vh=vh*0.6022045
IF (vh < 0) vh=0.
! Calcolo delv assumendo espansione termica = 0.
delv(i)=vh+vo2-voh
delv2=delv(i)*0.1/(8.3147*2.303)
delv2=delv2*(pbar(i)-1.)/tkelv(i)
partna=10.**((1.-xmol(i,13))* &
(x(36)+x(12)/tkelv(i)-delv2+x(28)*x(27)*pbar(i-1.)/2.303/ &
8.3147/tkelv(i)))
partk=10.**((1.-xmol(i,13))* &
(x(11)+x(12)/tkelv(i)-delv2+x(28)*x(27)*pbar(i-1.)/2.303/ &
8.3147/tkelv(i)))
partti=10.**((1.-xmol(i,13))* &
(x(38)+x(39)/tkelv(i)-delv2+x(28)*x(27)*pbar(i-1.)/2.303/ &
8.3147/tkelv(i)))
partca=10.**((1.-xmol(i,13))* &
(x(40)+x(41)/tkelv(i)-delv2+x(28)*x(27)*pbar(i-1.)/2.303/ &
8.3147/tkelv(i)))
partmg=10.**((1.-xmol(i,13))* &
(x(40)+x(41)/tkelv(i)-delv2+x(28)*x(27)*pbar(i-1.)/2.303/ &
8.3147/tkelv(i)))
partfe=10.**((1.-xmol(i,13))* &
(x(44)+x(45)/tkelv(i)-delv2+x(28)*x(27)*pbar(i-1.)/2.303/ &
8.3147/tkelv(i)))
! partsi=10.**((1.-xmol(i,13))*
! &(x(46)+x(47)/tkelv(i)-delv2+x(28)*x(27)*pbar(i-1.)/2.303/
! &8.3147/tkelv(i)))
! partal=10.**((1.-xmol(i,13))*
! &(x(48)+x(49)/tkelv(i)-delv2+x(28)*x(27)*pbar(i-1.)/2.303/
! &8.3147/tkelv(i)))
partw(i)=(partna**(xna(i)))*(partk**(xk(i)))*(partti**(xti(i)))* &
(partca**(xca(i)))*(partmg**(xmg(i)))*(partfe**(xfe(i)))
! &*(partsi**(xsi(i)))*(partal**(xal(i)))
! &*partsi
ratius=(aossi(i)/ah(i))/partw(i)
! ratius=(aossi(i)/ah(i)*totcat(i))/partw(i)
! xoh(i)=xcat0(i)*ratius/(ratius+1.)
xoh(i)=(xcat0(i)/som(i))*ratius/(1.+ratius) ! modified x scalare su 1 mole
xoh(i)=xoh(i)*som(i) !inserted x scalare sul tutto mole
xh(i)=xcat0(i)-xoh(i)
xoh(i)=DSQRT(xohz(i)*xoh(i))
frit=DABS(aossi(i)-aossiz(i))
IF (frit < 0.00001.AND.jk > 1) THEN
kflag = 3
END IF
! write (*,*) 'KFLAG ',kflag
IF (kflag == 3) EXIT
IF (jk == nit) THEN
! write (*,*) ' STRONZO...SU', i
PAUSE
EXIT
END IF
END DO
792 CONTINUE
! speculazione su H+ e O-
voh=(4./3.)*3.14159*((x(14)+x(21)+x(7)/1.d6* (tkelv(i)-298.15))**3)
voh=voh*0.6022045
! sarebbe x(7) il coeff lineare di espansione
vo=(4./3.)*3.14159*((x(14)+x(7)/1.d6*(tkelv(i)-298.15))**3)
vo=vo*0.6022045
! sarebbe x(16) il coeff lineare di espansione
vh=(4./3.)*3.14159*((x(21)+x(16)/1.d6*(tkelv(i)-298.15))**3)
vh=vh*0.6022045
IF (vh < 0) vh=0.
dv(i)=-vh-vo+voh
dv1=dv(i)*0.1/(8.3147*2.303)
dv1=dv1*(pbar(i)-1)/tkelv(i)
costx=10.**(x(18)+x(19)/tkelv(i)-dv1)
aoin=o(i)
ahin=xh(i)/som(i)
aspec=costx
bspec=-(costx*ahin+costx*aoin+totcat(i))
cspec=costx*ahin*aoin
root1=(-bspec-DSQRT(bspec**2.-4.*aspec*cspec))/(2.*aspec)
! root2=(-bspec+dsqrt(bspec**2.-4.*aspec*cspec))/(2.*aspec)
! ATTENZIONE EFFETTUO UN CAMBIO IMPORTANTE:
o(i)=o(i)-root1
! calcola moli di O2-, Oø e polianioni
! deriva la frazione di O2- sulla matrice anionica
! O1 il numero di O=, O3 il numero di Oø, O(i) il numero di O-
o1(i)=1.0-acidic(i)-o(i)/2.0
o3(i)=(4.0*acidic(i)-o(i))/2.0
o4(i)=o(i)/(o(i)+o3(i)+acidic(i)+root1)
! root(i)=root1
s=DEXP(-1.7165*DLOG(o4(i))+2.8776)
! si(i)=s
s1=acidic(i)/s
o2=o1(i)/(o1(i)+s1+xwd(i))
totani(i)=o1(i)+s1+xwd(i)
aossi(i)=o2
790 cost54=-2.8792+6364.8/tkelv(i)
cost57=x(1)+x(2)/tkelv(i)
cost58=x(3)+x(4)/tkelv(i)
cost59=1.1529-1622.4/tkelv(i)
! VFeO2 usando i CR (assumo struttura vincolata e non free anions)
! 0.63 HS CR di Shannon per Fe3+ (IR sarebbe 0.49) in coord IV
! 0.55 LS IR di Shannon per Fe3+ (HS sarebbe 0.645) in coord VI
! 0.61 LS IR di Shannon per Fe2+ (HS sarebbe 0.780) in coord VI
! 1.24 CR di Shannon per O2- (IR sarebbe 1.38) in coord IV
! 1.26 CR di Shannon per O2- (IR 1.40...) in coord VI
vfeo2m=4./3.*3.14159*((2*x(14)+0.49+2*x(7)/1.d6)**3)
vo2m=4./3.*3.14159*((x(14)+x(7)/1.d6*(tkelv(i)-298.15))**3)
vfe3p=4./3.*3.14159*((x(10)+x(8)/1.d6*(tkelv(i)-298.15))**3)
vfe2p=4./3.*3.14159*((x(15)+x(8)/1.d6*(tkelv(i)-298.15))**3)
conv=0.6022045
vfeo2m=vfeo2m*conv
vo2m=vo2m*conv
vfeo2m=vfeo2m-x(20)*vo2m
vfe3p=vfe3p*conv
vfe2p=vfe2p*conv
! espansione da trovare @ 298K
vfeo15=21.065+x(22)*0.001*(298-1673)
vfeo=13.65+x(23)*0.001*(298-1673)
! volumi da trovare @ 298K
dv57=vfeo2m-vfeo15-0.5*vo2m
dv58=vfe3p+1.5*vo2m-vfeo15
dv59=vfe2p+vo2m-vfeo
cost57=cost57-(dv57*0.1)*(pbar(i)-1.)/(tkelv(i)*8.3147*2.303)
cost57=cost57
cost58=cost58-(dv58*0.1)*(pbar(i)-1.)/(tkelv(i)*8.3147*2.303)
cost58=cost58
cost59=cost59-(dv59*0.1)*(pbar(i)-1.)/(tkelv(i)*8.3147*2.303)
cost59=cost59
! Therefore:
cost57=10.**cost57
cost58=10.**cost58
cost59=10.**cost59
! dai dati di Lange (1994)
v07=13.65
v05=42.13
eoxm7=2.92
eoxm5=9.09
coxm7=-0.45
coxm5=-2.53
v0fe2=v07+eoxm7*0.001*(tkelv(i)-1673)
v0fe3=v05+eoxm5*0.001*(tkelv(i)-1673)
! Passaggio ai joule/bar
v0fe2=0.1*v0fe2
v0fe3=0.1*v0fe3
cfe2=coxm7*0.0001
cfe3=coxm5*0.0001
cfe2=cfe2*0.1
cfe3=cfe3*0.1
dvs=(0.5*v0fe3-v0fe2)*(pbar(i)-1)+ &
(0.5*cfe3-cfe2)*((pbar(i)**2)/2-pbar(i)+0.5)
dvs=dvs/(8.3147*tkelv(i)*2.303)
! dvs=0
! cost54=cost54+x(27)*0.*(pbar(i)-1.)
cost54=10.**(cost54-dvs)
xoss =10.0**xossi(i)
den1=cost54*xoss**0.25
den2=cost57*aossi(i)**2*totani(i)+cost58*totcat(i)
ratio=aossi(i)**(0.5)*(cost59)*totcat(i)/(den1*den2)
cost20(i)=DEXP(x(32)+x(33)/tkelv(i))* &
DEXP(-x(34)*(pbar(i)-1.)/(8.41726*tkelv(i)))*DEXP(x(35))
cost22(i)=1./partw(i)
freeox(i)=aossi(i)*totani(i)
wmol(i)=poss(i,13)*0.001
kk=5000
IF (kympa == 0) kk=1
324 DO jh=1,kk
IF (kympa == 0) wmol(i)=wwmol(i)/18.015
IF (jh > 1) THEN
wmol(i)=(DABS(redox(i)*rappox(i)**11.))**(1./12.)
! wmol(i)=(dabs(redox(i)*rappox(i)**14.))**(1./15.)
END IF
rappox(i)=wmol(i)
wmol(i)=(xcat0(i)/2.-wmol(i))*2. ! moli di OH IR-like
wattot(i)=xcat0(i)*0.5
watmol(i)=wattot(i)-0.5*(wmol(i))
aden=-totcat(i)*wattot(i)+cost22(i)*wattot(i)*freeox(i) &
+0.5*totcat(i)*wmol(i)+0.5*cost22(i)*freeox(i)*wmol(i)
bden=cost22(i)*freeox(i)+totcat(i)
ohtrue(i)=aden/bden
IF (ohtrue(i) < 0.) ohtrue(i)=0.00001*wmol(i)
prot(i)=wmol(i)-ohtrue(i)
xleft(i)=(wattot(i)-0.5*wmol(i))/(wattot(i)+0.5*wmol(i))
dx(i)=(wattot(i)+0.5*wmol(i))/(wattot(i)-0.5*wmol(i))
! redox(i)=1000.*ohtrue(i)*prot(i)/((100.-poss(i,13))*cost20(i))
! redox(i)=ohtrue(i)*prot(i)/(100.*cost20(i))
redox(i)=ohtrue(i)*prot(i)/((somm(i)-0.5*xw(i))*cost20(i))
pipp(i)=2.*redox(i)+ohtrue(i)+prot(i)
ERR(i)=xcat0(i)-pipp(i)
! e poi va in iterazione...
crit=DABS(redox(i)-rappox(i))/DABS(redox(i))
cri(jh)=crit
IF (jh > 1.AND.cri(jh) > cri(jh-1)) THEN
WRITE (*,*) 'ITERATION NOT ATTAINED FOR THIS COMP !!!...'
PAUSE
EXIT
END IF
IF (crit < 0.00001) THEN
! write (*,*) 'CHECK POINT!',kk,crit,i
EXIT
END IF
END DO
8193 CONTINUE
END DO
30 erstan=0.0
xmis=0.
WRITE (19,*) 'Number of composition is ',ncomp
WRITE (19,*) 'KYMPA option is ',kympa
WRITE (19,*)
WRITE (19,*)'H2Ototwt%,nH2Otot,nH2Omolwt%EXP,nH2OmolEXP,1/T,nfreeOH,&
nfreeH,nOH-IR,nH2OmolEXP,nH2Omolcalc,nHtot,nHtot_after,DISPERSION,&
XfreeOHcalc,XfreeHcalc,XH2Omolcalc,YfreeOHcalc,YfreeHcalc,YH2Omolcalc'
DO i=1,ncomp
xmis=xmis+redox(i)
delta(i)=rappox(i)-redox(i)
ersta(i)=delta(i)**2
ermean=ermean+ABS(delta(i))
erstan=erstan+ersta(i)
WRITE(19,451)poss(i,13),wattot(i),xcat0(i),watmol(i)*18.015,watmol &
(i),1./tkelv(i),ohtrue(i),prot(i),wmol(i),rappox(i),redox(i), &
pipp(i),ERR(i), ohtrue(i)/((somm(i)-0.5*xw(i))), &
prot(i)/((somm(i)-0.5*xw(i))), redox(i)/((somm(i)-0.5*xw(i))), &
ohtrue(i)/(ohtrue(i)+prot(i)+redox(i)), &
prot(i)/(ohtrue(i)+prot(i)+redox(i)), redox(i)/(ohtrue(i)+prot(i)+redox(i))
451 FORMAT (8(f8.5,x),f9.6,1X,f13.8,1X,14(f12.5,x),1X,f9.3,f11.4,x &
,f8.5,1X,f12.5,1X,f12.5,1X,f12.5,1X,f12.5,1X,f12.5,1X,f12.5,1X, &
f12.5,1X,f12.5,1X,f12.5)
END DO
ermean=ermean/ncomp
erstan=(erstan/ncomp)**(0.5)
xmis=xmis/ncomp
WRITE(19,*)'Number of compositions ',ncomp
WRITE(19,*)'Mean error = ',ermean
WRITE(19,*)'Std error ',erstan
STOP
END