-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
34 changed files
with
2,434 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
# -*- coding: utf-8 -*- | ||
import numpy as np | ||
import os | ||
import random | ||
import cv2 | ||
|
||
|
||
def load_mnist(traing_num=50000): | ||
dat = np.load("data/mnist.npz") | ||
X = dat['x_train'][:traing_num] | ||
Y = dat['y_train'][:traing_num] | ||
X_test = dat['x_test'] | ||
Y_test = dat['y_test'] | ||
Y = Y.reshape((Y.shape[0],)) | ||
Y_test = Y_test.reshape((Y_test.shape[0],)) | ||
return X, Y, X_test, Y_test | ||
|
||
|
||
def move_step(v0, p0, bounding_box): | ||
xmin, xmax, ymin, ymax = bounding_box | ||
assert (p0[0]>=xmin) and (p0[0]<=xmax) and (p0[1]>=ymin) and (p0[1]<=ymax) | ||
v = v0.copy() | ||
assert v[0] != 0.0 and v[1] != 0.0 | ||
p = v0 + p0 | ||
while (p[0]<xmin) or (p[0]>xmax) or (p[1]<ymin) or (p[1]>ymax): | ||
vx, vy = v | ||
x, y = p | ||
dist = np.zeros((4,)) | ||
dist[0] = abs(x-xmin) if ymin <= (xmin-x)*vy/vx+y<=ymax else np.inf | ||
dist[1] = abs(x-xmax) if ymin <= (xmax-x)*vy/vx+y<=ymax else np.inf | ||
dist[2] = abs((y-ymin)*vx/vy) if xmin <= (ymin-y)*vx/vy+x<=xmax else np.inf | ||
dist[3] = abs((y-ymax)*vx/vy) if xmin <= (ymax-y)*vx/vy+x<=xmax else np.inf | ||
n = np.argmin(dist) | ||
if n == 0: | ||
v[0] = -v[0] | ||
p[0] = 2*xmin-p[0] | ||
elif n == 1: | ||
v[0] = -v[0] | ||
p[0] = 2*xmax-p[0] | ||
elif n == 2: | ||
v[1] = -v[1] | ||
p[1] = 2*ymin-p[1] | ||
elif n == 3: | ||
v[1] = -v[1] | ||
p[1] = 2*ymax-p[1] | ||
else: | ||
assert False | ||
return v, p | ||
|
||
|
||
|
||
class MovingMNISTIterator(object): | ||
def __init__(self): | ||
self.mnist_train_img, self.mnist_train_label,self.mnist_test_img, self.mnist_test_label = load_mnist() | ||
|
||
def sample(self, digitnum, | ||
width, | ||
height, | ||
seqlen, | ||
batch_size, | ||
index_range=(0, 50000)): | ||
"""""" | ||
""" | ||
:param digitnum: The num of the digits | ||
:param width: The width of the generated images | ||
:param height: The height of the generated images | ||
:param seqlen: The length of the image sequence | ||
:param index_range: by default | ||
:return: | ||
""" | ||
character_indices = np.random.randint(low=index_range[0], high=index_range[1],size=(batch_size, digitnum)) | ||
angles = np.random.random((batch_size, digitnum)) * (2 * np.pi) | ||
magnitudes = np.random.random((batch_size, digitnum)) * (5 - 3) + 3 | ||
velocities = np.zeros((batch_size, digitnum, 2), dtype='float32') | ||
velocities[..., 0] = magnitudes * np.cos(angles) | ||
velocities[..., 1] = magnitudes * np.sin(angles) | ||
xmin = 14.0 | ||
xmax = float(width) - 14.0 | ||
ymin = 14.0 | ||
ymax = float(height) - 14.0 | ||
positions = np.random.uniform(low=xmin, high=xmax,size=(batch_size, digitnum, 2)) | ||
seq = np.zeros((seqlen, batch_size, 1, height, width), dtype='uint8') | ||
for i in range(batch_size): | ||
for j in range(digitnum): | ||
ind = character_indices[i, j] | ||
v = velocities[i, j, :] | ||
p = positions[i, j, :] | ||
img = self.mnist_train_img[ind].reshape((28, 28)) | ||
for k in range(seqlen): | ||
topleft_y = int(p[0] - img.shape[0] / 2) | ||
topleft_x = int(p[1] - img.shape[1] / 2) | ||
seq[k, i, 0, topleft_y:topleft_y + 28, topleft_x:topleft_x + 28] = np.maximum(seq[k, i, 0, topleft_y:topleft_y + 28, topleft_x:topleft_x + 28],img) | ||
v, p = move_step(v, p, [xmin, xmax, ymin, ymax]) | ||
return seq | ||
|
||
|
||
|
||
class MovingMnist_Generation(object): | ||
def __init__(self,digtnum, width, height, seq_length): | ||
self.digtnum = digtnum | ||
self.width = width | ||
self.height = height | ||
self.seq_length = seq_length | ||
|
||
def next_batch(self,batch_size,next_seqlen=1,return_one=True,norm=False): | ||
movingmnist = MovingMNISTIterator() | ||
|
||
|
||
sample = movingmnist.sample(digitnum=self.digtnum, | ||
width=self.width, | ||
height=self.height, | ||
seqlen=self.seq_length+next_seqlen, | ||
batch_size=batch_size) | ||
sample = np.transpose(sample,(1,0,2,3,4)) | ||
|
||
|
||
x_batch = sample[:,0:self.seq_length,:,:,:] | ||
y_batch = sample[:,self.seq_length:(self.seq_length+next_seqlen),:,:,:] | ||
|
||
if return_one is True and next_seqlen == 1: | ||
y_batch = np.reshape(y_batch,(batch_size,1,self.width,self.height)) | ||
|
||
# return the x_batch with shape(batchsize,seq_length,channels,width,height) | ||
# return the y_batch with shape(batchsize,seq_length,channels,width,height) or (batchsize,channels,width,height) when y_batch has only one timestep | ||
if norm: | ||
return x_batch/255.0 , y_batch/255.0 | ||
else: | ||
return x_batch,y_batch | ||
|
||
|
||
|
||
class SCMD_Generation(object): | ||
def __init__(self,seq_length=5,next_seq=1,isTrain=True,return_one=True,norm=False,baseline=False): | ||
self.seq_length = seq_length # the length of the squence for training | ||
self.next_seq = next_seq | ||
self.is_train = isTrain | ||
self.return_one = return_one | ||
self.norm = norm | ||
self.baseline = baseline | ||
self.train_root = "data/SCMD2016/TRAIN" | ||
self.test_root = "data/SCMD2016/TEST" | ||
self.data_length = 0 | ||
|
||
|
||
def next_batch(self,batchsize): | ||
x_batch = np.ndarray(shape=(batchsize,self.seq_length,1,200,200),dtype=np.float32) | ||
y_batch = np.ndarray(shape=(batchsize,1,1,200,200),dtype=np.float32) | ||
|
||
if self.is_train: | ||
datalist = os.listdir(self.train_root) | ||
else: | ||
datalist = os.listdir(self.test_root) | ||
self.data_length = len(datalist) | ||
|
||
random_order = random.sample(range(1,self.data_length),batchsize) | ||
if self.is_train: | ||
root_path = self.train_root | ||
else: | ||
root_path = self.test_root | ||
|
||
for i in range(batchsize): | ||
for k in range(self.seq_length): | ||
x_batch[i,k,0,:,:] = cv2.imread(root_path+"/SCMD_"+str(random_order[i])+"/"+str(k+1)+".png",cv2.IMREAD_GRAYSCALE) | ||
y_batch[i,0,0,:,:] = cv2.imread(root_path+"/SCMD_"+str(random_order[i])+"/"+str(self.seq_length+1)+".png",cv2.IMREAD_GRAYSCALE) | ||
|
||
x_batch,y_batch = x_batch*10.0,y_batch*10.0 | ||
|
||
if self.baseline: | ||
x_batch = x_batch[:,:,:,100,100] | ||
y_batch = y_batch[:,:,:,100,100] | ||
|
||
if self.norm: | ||
x_batch = x_batch/255.0 | ||
y_batch = y_batch/255.0 | ||
|
||
|
||
return x_batch,y_batch | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
# -*- coding: utf-8 -*- | ||
import torch | ||
import dataset | ||
import cv2 | ||
|
||
model_clstm_m = "checkpoint/clstm_m/model_best.pth" | ||
model_clstm_s = "checkpoint/clstm_s/model_best.pth" | ||
mdoel_forecast_clstm_m = "checkpoint/forecast_clstm_m/model_best.pth" | ||
mdoel_forecast_clstm_s = "checkpoint/forecast_clstm_s/model_best.pth" | ||
model_forecast_clstm_forecaster="checkpoint/forecast_clstm_forecaster/model_best.pth" | ||
|
||
|
||
|
||
def demo_mnist(model_path): | ||
model = torch.load(model_path) | ||
mnist = dataset.MovingMnist_Generation(digtnum=2, | ||
width=64, | ||
height=64, | ||
seq_length=9) | ||
x_batch,y_batch = mnist.next_batch(batch_size=1, | ||
next_seqlen=1, | ||
return_one=False, | ||
norm=False) | ||
x_batch = torch.from_numpy(x_batch).float() | ||
|
||
output = model.forward(x_batch) | ||
output = output.detach().cpu().numpy() | ||
cv2.imwrite("demo_mnist.png",output[0][0][0]) | ||
|
||
|
||
|
||
def demo_scmd(model_path): | ||
model = torch.load(model_path) | ||
scmd = dataset.SCDMD_Generation() | ||
x_batch,y_batch = scmd.next_batch(batchsize=1) | ||
x_batch = torch.from_numpy(x_batch).float() | ||
|
||
output = model.forward(x_batch) | ||
output = output.detach().cpu().numpy() | ||
cv2.imwrite("demo_scmd.png",output[0][0][0]) |
Oops, something went wrong.