-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
101 lines (83 loc) · 3.09 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import json
import os
import pytorch_lightning as pl
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision.models import resnet101, resnet50, inception_v3, resnet34, resnet18
from dataset import StretcherDataset
import statistics
class Net(pl.LightningModule):
def __init__(self, root, batch_size):
super(Net, self).__init__()
self.batch_size = batch_size
self.root = root
self.spec_net = nn.Sequential(*list(resnet18(pretrained=False).children())[:-1], nn.ReLU(True))
self.image_net = nn.Sequential(*list(resnet18(pretrained=False).children())[:-1], nn.ReLU(True))
self.fc_loc = nn.Sequential(
nn.Linear(1024, 32),
nn.Dropout(0.5),
nn.ReLU(True),
nn.Linear(32, 1)
)
def forward(self, x):
s = x['spec'][:, None, :, :]
spec = torch.cat((s, s, s), 1)
i = x['image'][:, None, :, :]
image = torch.cat((i, i, i), 1)
spec_out = self.spec_net(spec)
spec_out = spec_out.view(-1, 512)
img_out = self.image_net(image.float())
img_out = img_out.view(-1, 512)
combined_out = torch.cat((spec_out, img_out), 1)
midpoint = self.fc_loc(combined_out)
# print(midpoint)
image_width = x['image'].shape[1]
map = x['map'][39][:, None]
map = map / image_width - 0.5
loss = F.mse_loss(midpoint, map, reduction='mean')
accuracy = 1 / loss.mean().item()
return loss, accuracy
def training_step(self, batch, batch_idx):
losses, accuracy = self.forward(batch)
tensorboard_logs = {
'train_loss': losses,
'train_accuracy': accuracy
}
return {'loss': losses, 'log': tensorboard_logs}
def validation_step(self, batch, batch_idx):
losses, accuracy = self.forward(batch)
return {'val_loss': losses, 'val_acc': accuracy}
def validation_end(self, outputs):
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
avg_acc = statistics.mean([x['val_acc'] for x in outputs])
tensorboard_logs = {
'val_loss': avg_loss,
'val_acc': avg_acc
}
return {'val_loss': avg_loss, 'log': tensorboard_logs}
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.0003)
@pl.data_loader
def train_dataloader(self):
dataset = StretcherDataset(
root=self.root + '/train'
)
dist_sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=True)
return DataLoader(
dataset,
sampler=dist_sampler,
batch_size=self.batch_size,
)
@pl.data_loader
def val_dataloader(self):
dataset = StretcherDataset(
root=self.root + '/val'
)
dist_sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=False)
return DataLoader(
dataset,
sampler=dist_sampler,
batch_size=self.batch_size,
)