-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
160 lines (119 loc) · 4.92 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import time
import copy
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch import nn, optim
import torch.nn.functional as F
import pytorch_lightning as pl
from sklearn import decomposition
from sklearn.feature_extraction import image
import scipy
from scipy.integrate import solve_ivp
##### CNN model
class CNN(pl.LightningModule):
def __init__(self, data, n_layers=4, dW=1, dimCNN=10, batch_size=128, lr=5e-3):
super(CNN, self).__init__()
self.data = data
self.data_shape = data[0]['Truth'].shape[1:]
self.nlayers = n_layers
self.dW = dW
self.dimCNN = dimCNN
self.batch_size = batch_size
self.lr = lr
self.layers_list = nn.ModuleList(
[torch.nn.Conv1d(
self.data_shape[1],
self.data_shape[1]*dimCNN,
2*self.dW+1,
padding=dW)])
self.layers_list.extend(
[torch.nn.Conv1d(
self.data_shape[1]*dimCNN,
self.data_shape[1]*dimCNN,
2*self.dW+1,
padding=dW) for _ in range(1, self.nlayers)])
self.layers_list.append(
torch.nn.Conv1d(
self.data_shape[1]*dimCNN,
self.data_shape[1],
1,
padding=0,
bias=False))
self.tot_loss = []
self.tot_val_loss = []
self.best_loss = 1e10
def forward(self, xinp):
xinp = xinp.view(-1, self.data_shape[1], self.data_shape[0])
x = self.layers_list[0](xinp)
for layer in self.layers_list[1:]:
x = layer(F.relu(x))
x = x.view(-1, self.data_shape[0], self.data_shape[1])
return x
def setup(self, stage='None'):
training_dataset = torch.utils.data.TensorDataset(
torch.Tensor(self.data[0]['Init']),
torch.Tensor(self.data[0]['Obs']),
torch.Tensor(self.data[0]['Mask']),
torch.Tensor(self.data[0]['Truth']))
val_dataset = torch.utils.data.TensorDataset(
torch.Tensor(self.data[1]['Init']),
torch.Tensor(self.data[1]['Obs']),
torch.Tensor(self.data[1]['Mask']),
torch.Tensor(self.data[1]['Truth']))
test_dataset = torch.utils.data.TensorDataset(
torch.Tensor(self.data[2]['Init']),
torch.Tensor(self.data[2]['Obs']),
torch.Tensor(self.data[2]['Mask']),
torch.Tensor(self.data[2]['Truth']))
self.dataloaders = {
'train': torch.utils.data.DataLoader(training_dataset,
batch_size=self.batch_size,
shuffle=True, num_workers=0),
'val': torch.utils.data.DataLoader(val_dataset,
batch_size=self.batch_size,
shuffle=False, num_workers=0),
'test': torch.utils.data.DataLoader(test_dataset,
batch_size=self.batch_size,
shuffle=False, num_workers=0)
}
def loss(self, x, y):
return torch.mean((x - y)**2)
def training_step(self, train_batch, batch_idx):
inputs_init, inputs_missing, masks, targets_GT = train_batch
inputs_init = torch.autograd.Variable(inputs_init, requires_grad=True)
num_loss = 0
running_loss = 0.0
outputs = self(inputs_init)
loss = torch.mean((outputs - targets_GT)**2)
running_loss += loss.item() * inputs_missing.size(0)
num_loss += inputs_missing.size(0)
epoch_loss = running_loss / num_loss
self.tot_loss.append(epoch_loss)
self.log('train_loss', epoch_loss)
return loss
def validation_step(self, val_batch, batch_idx):
inputs_init, inputs_missing, masks, targets_GT = val_batch
num_val_loss = 0
running_val_loss = 0.0
outputs = self(inputs_init)
loss = torch.mean((outputs - targets_GT)**2)
running_val_loss += loss.item() * inputs_missing.size(0)
num_val_loss += inputs_missing.size(0)
epoch_val_loss = running_val_loss / num_val_loss
self.tot_val_loss.append(epoch_val_loss)
self.log('val_loss', loss, prog_bar=False, logger=False)
if epoch_val_loss < self.best_loss:
self.best_loss = epoch_val_loss
self.best_model_wts = copy.deepcopy(self.state_dict())
return loss
def configure_optimizers(self):
self.optimizer = optim.Adam(self.parameters(), lr=self.lr)
return self.optimizer
def train_dataloader(self):
return self.dataloaders['train']
def val_dataloader(self):
return self.dataloaders['val']
def test_dataloader(self):
return self.dataloaders['test']