-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprojectreport.tex
368 lines (297 loc) · 10.9 KB
/
projectreport.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
%% LyX 2.2.2 created this file. For more info, see http://www.lyx.org/.
%% Do not edit unless you really know what you are doing.
\documentclass[english]{article}
\usepackage[T1]{fontenc}
\usepackage[latin9]{inputenc}
\usepackage{geometry}
\geometry{verbose,tmargin=3cm,bmargin=2cm,lmargin=2cm,rmargin=2cm}
\setlength{\parskip}{\medskipamount}
\setlength{\parindent}{0pt}
\usepackage{float}
\usepackage{units}
\usepackage{url}
\usepackage{graphicx}
\makeatletter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands.
\usepackage{fancyhdr}
\pagestyle{fancy}
\lhead{ME 477 FEA, Fall 2015}
\chead{C. Ça\u{g}r\i{} Özkan}
\rhead{FEM Project}
\rfoot{Yeditepe University}
\cfoot{\thepage}
\lfoot{Mechanical Engineering}
\usepackage{tikz}
\usepackage{pgfplots}
% recommended as of Pgfplots 1.3:
\pgfplotsset{compat=newest}
\@ifundefined{showcaptionsetup}{}{%
\PassOptionsToPackage{caption=false}{subfig}}
\usepackage{subfig}
\makeatother
\usepackage{babel}
\usepackage{listings}
\renewcommand{\lstlistingname}{Listing}
\begin{document}
\title{\textbf{\Huge{}FE Analysis of 2D Bridge Structure}\\
\textbf{\Huge{}}\\
\texttt{\huge{}me 477 fea project, fall 2015}}
\author{C. Ça\u{g}r\i{} Özkan}
\date{05-I-2016}
\maketitle
\pagebreak
\section{Problem and Overview}
I choose the similar problem to example problem which can be found
at ME 477 section at unilica{[}dot{]}com. The problem to deal with
is how some arched bridge structure behaves under load which is applied
at its peak point by finite element method. FEAP is used for its FE
Analysis. In finite element truss method will be used.
The example geometry can be seen in Figure \ref{fig:3D-Model}.
\begin{center}
\begin{figure}[H]
\begin{centering}
\includegraphics[width=0.6\textwidth]{Desktop/fempro/Screenshot_2016-01-03_01-19-08}
\par\end{centering}
\caption{3D Model\label{fig:3D-Model}}
\end{figure}
\par\end{center}
In these problem given parameters are $\alpha=72^{o}$ , $\hat{EOC=}\nicefrac{\alpha}{3}$
and $R=14m$. By knowing those properties the locations of points
can be determined easily. And in case of interest the element lengths
can be found from Law of Cosine(Eq. \ref{eq:cos})
\begin{equation}
a^{2}=b^{2}+c^{2}-2\:b\:c\:cos(\alpha)\label{eq:cos}
\end{equation}
Location points in Cartesian Coordinates are found using Octave. Finding
A and E point locations and |AE| length are demonstrated.
\begin{lstlisting}[basicstyle={\normalsize\ttfamily},breaklines=true]
octave:1> A=[-14*cosd((180-72)/2);14*sind((180-72)/2)]
A =
-8.2290
11.3262
octave:2> E=[-14*cosd((180-72)/2+24);14*sind((180-72)/2+24)]
E =
-2.9108
13.6941
octave:3> AE=sqrt((14^2+14^2-2*14*14*cosd(24)))
AE = 5.8215
\end{lstlisting}
Structure is simplified as follows due to use the advantages of 2-D
analysis. Figure \ref{fig:Simplified-Model} shows the simplified
2D model.
\begin{center}
\begin{figure}[H]
\begin{centering}
\includegraphics[width=0.3\textheight]{Desktop/fempro/1}
\par\end{centering}
\caption{Simplified Model\label{fig:Simplified-Model}}
\end{figure}
\par\end{center}
As it can be seen from the figure \ref{fig:Simplified-Model} , this
design have 5 nodes and 4 elements.
As a material A36 steel is chosen. Which has a Young's Modulus (E)
200 10\textsuperscript{9}{[}Pa{]}. Cross sectional area is chosen
to be 0.1 meter-squared and squared profile, also applied force chosen
to be 30kN to demonstrate heavy load on the bridge\footnote{Maximum truck load is restricted with 27 metric tones by the law in
Republic of Turkey.}.
Also fixed points which are the beginning and the end of the bridge,
will be used for boundary conditions of the problem.
But with these force magnitude and material values, displacement values
came out to be enormous. In this point I crossed with lowering the
force or changing the design dilemma, and I went with changing the
design under same material and force properties to get practical results.
As a modification 3 nodes and 9 elements are added. The coordinates
of the nodes and the structure can be seen on Figure \ref{fig:Design-v2}.
The modified design's nodes, elements and degree of freedoms are shown
in Figure \ref{fig:nedof}.
\begin{center}
\begin{figure}[H]
\begin{centering}
\subfloat[\label{fig:Design-v2}]{\begin{centering}
\includegraphics[width=0.3\textheight]{Desktop/fempro/2}
\par\end{centering}
}
\par\end{centering}
\begin{centering}
\subfloat[\label{fig:nedof}]{\begin{centering}
\includegraphics[width=0.6\textwidth]{Desktop/fempro/tar/3}
\par\end{centering}
}
\par\end{centering}
\caption{Design v2}
\end{figure}
\par\end{center}
\pagebreak
\section{Pre-Process}
To solve the problem input file is created in favorite text editor.
Even though odd look of it, it just contains the info about its nodes
coordinates, elements that are created between these nodes and material
properties of those elements, applied force magnitude and its whereabouts,
boundary conditions and lastly what we hope to get from analysis.
The input file can be seen below.
\begin{lstlisting}[numbers=left,numberstyle={\footnotesize},basicstyle={\normalsize\ttfamily},breaklines=true]
FEAP * * 2-D Bridge Structure
0 0 0 2 2 2
MATErial,1
TRUSS
ELAStic ISOTropic 200e9
CROSs SECTion 0.1
COORdinates
1 0 -8.2 11.3
2 0 -2.9 13.7
3 0 0.0 14.0
4 0 2.9 13.7
5 0 8.2 11.3
6 0 -4.1 11.3
7 0 0.0 11.3
8 0 4.1 11.3
ELEMents
1 0 1 1 2
2 0 1 2 3
3 0 1 3 4
4 0 1 4 5
5 0 1 1 6
6 0 1 6 7
7 0 1 7 8
8 0 1 8 5
9 0 1 6 2
10 0 1 2 7
11 0 1 7 3
12 0 1 3 8
13 0 1 8 4
BOUNdary restraints
1 0 1 1
5 0 1 1
FORCe
3 0 0.0 -30000.0
END
TIE
BATCH
TANG,,1
DISPlacement ALL
STRESs ALL
REACtion ALL
PLOT MESH
PLOT LOAD 1,-1
PLOT CONT 1
END
INTEractive
STOP
\end{lstlisting}
According to these input file mesh created by FEAP can be seen on
Figure\ref{fig:Mesh}.
\begin{center}
\begin{figure}[H]
\begin{centering}
\includegraphics[width=0.6\textwidth]{\string"Desktop/fempro/tar/truss dosyasi/mesh\string".eps}
\par\end{centering}
\caption{Mesh\label{fig:Mesh}}
\end{figure}
\par\end{center}
\pagebreak
\section{Post-process \& Conclusion}
After the solution is run, output file file and colorized picture
for displacements are created {[}Figure \ref{fig:Colorized-Displacement}{]}.
\begin{center}
\begin{figure}[H]
\begin{centering}
\includegraphics[width=0.8\textwidth]{\string"Desktop/fempro/tar/truss dosyasi/trus\string".eps}
\par\end{centering}
\caption{Colorized Displacement\label{fig:Colorized-Displacement}}
\end{figure}
\par\end{center}
Since output file is 228 lines long; only the interested sections
of it is posted below. Full version can be found at \url{http://pastebin.com/tduNBxsi}.
Following section of output file contains information about nodal
displacements. If results would be discussed they are practical since
their very small values.
\begin{lstlisting}[basicstyle={\small\ttfamily}]
FEAP * * 2-D Bridge Structure
N o d a l D i s p l a c e m e n t s Time 0.00000E+00
Prop. Ld. 1.00000E+00
Node 1 Coord 2 Coord 1 Displ 2 Displ
1 -8.2000E+00 1.1300E+01 0.0000E+00 0.0000E+00
2 -2.9000E+00 1.3700E+01 4.0536E-06 -3.4595E-05
3 0.0000E+00 1.4000E+01 -1.3559E-06 -4.7185E-05
4 2.9000E+00 1.3700E+01 -4.0293E-06 -3.4542E-05
5 8.2000E+00 1.1300E+01 0.0000E+00 0.0000E+00
6 -4.1000E+00 1.1300E+01 -6.3707E-07 -3.2250E-05
7 0.0000E+00 1.1300E+01 -1.2741E-06 -4.5796E-05
8 4.1000E+00 1.1300E+01 6.3707E-07 -3.4255E-05
*Command 3 * stre ALL v: 0.00 0.00 0.00
t= 0.01 0.00
\end{lstlisting}
Following section of output file contains information about force
and strain.
\begin{lstlisting}[basicstyle={\normalsize\ttfamily}]
FEAP * * 2-D Bridge Structure
Truss Element
Elmt Matl 1-coord 2-coord 3-coord Force Strain Flux
1 1 -5.550E+00 1.250E+01 0.000E+00 -3.63630E+04 -1.81815E-06 0.00000E+00
2 1 -1.450E+00 1.385E+01 0.000E+00 -4.57987E+04 -2.28993E-06 0.00000E+00
3 1 1.450E+00 1.385E+01 0.000E+00 -2.71669E+04 -1.35835E-06 0.00000E+00
4 1 5.550E+00 1.250E+01 0.000E+00 -3.63630E+04 -1.81815E-06 0.00000E+00
5 1 -6.150E+00 1.130E+01 0.000E+00 -3.10764E+03 -1.55382E-07 0.00000E+00
6 1 -2.050E+00 1.130E+01 0.000E+00 -3.10764E+03 -1.55382E-07 0.00000E+00
7 1 2.050E+00 1.130E+01 0.000E+00 9.32292E+03 4.66146E-07 0.00000E+00
8 1 6.150E+00 1.130E+01 0.000E+00 -3.10764E+03 -1.55382E-07 0.00000E+00
9 1 -3.500E+00 1.250E+01 0.000E+00 6.35275E-11 3.17637E-21 0.00000E+00
10 1 -1.450E+00 1.250E+01 0.000E+00 1.61353E+04 8.06766E-07 0.00000E+00
11 1 0.000E+00 1.265E+01 0.000E+00 -1.02874E+04 -5.14368E-07 0.00000E+00
12 1 2.050E+00 1.265E+01 0.000E+00 -2.21905E+04 -1.10952E-06 0.00000E+00
13 1 3.500E+00 1.250E+01 0.000E+00 1.36451E+04 6.82255E-07 0.00000E+00
*Command 4 * reac ALL v: 0.00 0.00 0.00
t= 0.01 0.00
\end{lstlisting}
It should be noted that force can lead to stress with easy algebra.
\[
\sigma=\frac{F}{A}
\]
Basic manipulation gives $\sigma$ values as follows:
\begin{lstlisting}[basicstyle={\normalsize\ttfamily}]
octave:2> Force/0.1
ans =
-3.6400e+05
-4.5800e+05
-2.7200e+05
-3.6400e+04
-3.1100e+04
-3.1100e+04
9.3200e+04
-3.1100e+04
6.3500e-10
1.6100e+05
-1.0300e+05
-2.2000e+05
1.3600e+05
\end{lstlisting}
Which is safe since yield strength of A 36 steel is 260 MPa.
Following section of output file contains information about nodal
reactions.
\begin{lstlisting}
FEAP * * 2-D Bridge Structure
N o d a l R e a c t i o n s
Node 1 dof 2 dof
1 3.6233E+04 1.5000E+04
2 -4.9113E-11 6.0027E-11
3 2.9104E-11 -3.0000E+04
4 -5.0932E-11 1.2733E-11
5 -3.6233E+04 1.5000E+04
6 -4.1598E-11 -5.6821E-11
7 7.2760E-12 -4.0018E-11
8 1.2733E-11 3.0923E-11
Pr.Sum -7.0372E-12 1.3870E-12
Sum -7.0372E-12 1.3870E-12
|Sum| 7.2465E+04 6.0000E+04
Energy: Displacements * Reactions = 1.415548070137809E+00
\end{lstlisting}
Very small reactions except node 1 and 5 which are bridge's beginning
and end points. It can be seen that nodal reactions are very small
except node 1 and 5 which are bridge's beginning and end points and
therefore fixed.
In conclusion modified bridge structure definitely can be considered
safe since displacement, stress and node reactions are allowable.
I choose FEAP over Pyfem for the analysis for practical reasons. FEAP
was good enough to gave those results without too much struggle; but
I would like to deal with Pyfem in future.
\end{document}