-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_SEQ.py
614 lines (521 loc) · 24.5 KB
/
train_SEQ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
'''
* Copyright (c) 2023, Toshiba Europe Ltd
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
* By Chao Zhang
'''
import argparse
from operator import mod
import os
from re import M
from typing_extensions import Self
import ruamel.yaml as yaml
import numpy as np
import random
import time
import wandb
import datetime
import json
from PIL import Image
from pathlib import Path
from tqdm import tqdm
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader
from torchvision import transforms
from matplotlib import pyplot as plt
from models.my_blip import blip_decoder, blip_decoder2
from models.my_seq import LED_Base, load_clipseg
from collections import defaultdict
from data.utils import loss_func_seq, evaluate_clipseg, loss_func_aux
import utils
from utils import cosine_lr_schedule, distance_from_pixels, accuracy, lprint, confidence_from_pixels, euclid_distance_from_pixels
from data.seq_dataset import Loader
from data.utils import save_result, coco_caption_eval, convert_tensor_to_input, save_pred_seq
def train(model, data_loader, val_loader, optimizer, epoch, device, loss_func, config, args, log, wandb, tmodel):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
print_freq = len(data_loader)//5
#print_freq = config['print_freq']
if print_freq==0:
print_freq=10
lprint(f'valid freq: {print_freq}', log)
mse_func = torch.nn.MSELoss()
save_list = []
for i, (info_elem, targets, maps, tokens, conversions, level, cap_len, attn_mask, cap_img) in enumerate(tqdm(data_loader)):
if config['dry_run'] and i > 1:
print('dry run break')
break
if config['debug'] and i>200:
print('debug break')
break
maps = maps.to(device)
B, num_maps, C, H, W = maps.size()
maps = maps.view(B * num_maps, C, H, W)
B, num_maps, tH, tW = targets.size()
targets = targets.view(B * num_maps, tH, tW).to(device).float()
attn_mask = attn_mask.to(device)
tokens = tokens.to(device).long()
cap_len = cap_len.to(device)
max_turn = cap_len.max().item()
if num_maps>1:
tokens = torch.repeat_interleave(tokens, num_maps, dim=0)
attn_mask = torch.repeat_interleave(attn_mask, num_maps, dim=0)
cap_len = torch.repeat_interleave(cap_len, num_maps, dim=0)
cap_img = torch.repeat_interleave(cap_img, num_maps, dim=0)
# teacher model
#toutput = tmodel(maps, tokens, attn_mask, cap_len)
output = model(maps, tokens, attn_mask, cap_len)
#import ipdb; ipdb.set_trace()
ts, BN, OC, h, w = output.shape
if output.ndim==5:
heatmaps = output[:,:,0]
else:
heatmaps = output[:,0,:,:]
if OC>1:
bimaps = output[:,:,1]
else:
bimaps = None
map_pred = None
if max_turn >= 3 and config['debug']:
# if (i%100==0) and config['debug']:
save_list.append(i)
if len(save_list)<5:
save_pred_seq(epoch, targets, maps, heatmaps, bimaps, level,
cap_img, cap_len,
B=B, num_maps=num_maps,
map_size=(H,W), target_size=(tH,tW),
heat_size=(h,w), args=args, config=config, mode='train', iter=i)
# resize target to heatmap
if tH!=h or tW!=w:
targets = F.interpolate(
targets.unsqueeze(1),
(h, w),
mode="bilinear",
).squeeze(1).float()
targets = targets.view(B, num_maps, h, w)
# log-softmax loss
if config['per_image_softmax']:
log_heatmaps = F.log_softmax(heatmaps.view(ts*B*num_maps, -1), 1).view(ts, B, num_maps, h, w)
else:
log_heatmaps = F.log_softmax(heatmaps.view(B, -1), 1).view(B, num_maps, h, w)
loss = 0
loss_loc = loss_func_seq(loss_func, log_heatmaps, targets, cap_len, config, device) * config["loss_w"]
loss+=loss_loc
# sigmoid loss
if config['per_pixel_sigmoid']:
if bimaps is not None:
sig_heatmaps = F.sigmoid(bimaps).view(ts, B, num_maps, h, w)
else:
sig_heatmaps = F.sigmoid(heatmaps).view(ts, B, num_maps, h, w)
loss_aux = loss_func_aux(mse_func, sig_heatmaps, targets, cap_len, config, device) * config['aux_loss_w']
loss+=loss_aux
else:
loss_aux = torch.tensor(0)
if config['map_recon']:
loss_recon = mse_func(map_pred, maps) * config['map_loss_w']
else:
loss_recon = torch.tensor(0)
loss+=loss_recon
if config['loss_gain'] and ts>1:
#loss_gain = mse_func(heatmaps[0], heatmaps[-1]) * config['gain_loss_w']
loss_gain = loss_func(log_heatmaps[0], targets).sum((1,2,3)) * config['gain_loss_w']
loss_gain = loss_gain.sum() / targets.size(0)
loss_gain = loss_gain*(-1)
else:
loss_gain = torch.tensor(0)
loss+=loss_gain
optimizer.zero_grad()
loss.backward()
optimizer.step()
metric_logger.update(loss=loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if ((i+1) % print_freq == 0):
# log metrics to wandb
if wandb is not None:
wandb.log({"tr_loss": loss.item(),
"tr_loc": loss_loc.item(),
"tr_aux": loss_aux.item(),
"lr": optimizer.param_groups[0]["lr"]})
if config['debug']:
lprint(f'tr_loss: {loss.item():.4f},tr_loc: {loss_loc.item():.4f},tr_aux: {loss_aux.item():.4f}' )
torch.cuda.empty_cache()
return metric_logger.global_avg()
@torch.no_grad()
def evaluate(model, data_loader, optimizer, epoch, device, loss_func, config, args, mode, log, wandb):
# evaluate
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
#metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
metric_logger.add_meter('le', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
metric_logger.add_meter('acc0', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
metric_logger.add_meter('acc5', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
mse_func = torch.nn.MSELoss()
save_list = []
le_dict = defaultdict(list)
le_list = []
for i, (info_elem, targets, maps, tokens, conversions, level, cap_len, attn_mask, cap_img) in enumerate(tqdm(data_loader)):
# if i>=10: break
maps = maps.to(device)
B, num_maps, C, H, W = maps.size()
maps = maps.view(B * num_maps, C, H, W)
B, num_maps, tH, tW = targets.size()
targets = targets.view(B * num_maps, tH, tW).to(device).float()
attn_mask = attn_mask.to(device)
tokens = tokens.to(device).long()
cap_len = cap_len.to(device)
if num_maps>1:
tokens = torch.repeat_interleave(tokens, num_maps, dim=0)
attn_mask = torch.repeat_interleave(attn_mask, num_maps, dim=0)
cap_len = torch.repeat_interleave(cap_len, num_maps, dim=0)
cap_img = torch.repeat_interleave(cap_img, num_maps, dim=0)
output = model(maps, tokens, attn_mask, cap_len)
ts, BN, OC, h, w = output.shape
if output.ndim==5:
heatmaps = output[:,:,0]
else:
heatmaps = output[:,0,:,:]
if OC>1:
bimaps = output[:,:,1]
else:
bimaps = None
map_pred = None
max_turn = cap_len.max().item()
if args.evaluate or (max_turn >= 3 and config["debug"]):
save_pred_seq(epoch, targets, maps, heatmaps, bimaps, level, cap_img, cap_len,
B=B, num_maps=num_maps,
map_size=(H,W), target_size=(tH,tW),
heat_size=(h,w), args=args, config=config, mode=mode, iter=i)
save_list.append(i)
if config['per_image_softmax']:
heatmaps = F.log_softmax(heatmaps.view(ts*B*num_maps, -1), 1).view(ts, B, num_maps, h, w)
else:
heatmaps = F.log_softmax(heatmaps.view(B, -1), 1).view(B, num_maps, h, w)
# resize target to heatmap
if h!=tH or w!=tW:
targets = F.interpolate(
targets.unsqueeze(1),
(h, w),
mode="bilinear",
).squeeze(1).float()
targets = targets.view(B, num_maps, h, w)
def loss_func_seq(loss_func, heatmaps, targets, gt_turns, config):
ts = heatmaps.size(0)
loss = 0
for t in range(ts):
loss_turn = loss_func(heatmaps[t], targets).sum((1,2,3))
cur_t = torch.tensor(t+1).repeat(B).to(device)
weights = config['discount']**(gt_turns - cur_t)
weights[gt_turns<cur_t] = 0
loss_turn = (loss_turn * weights).sum()/targets.size(0)
loss+=loss_turn
return loss
loss = loss_func_seq(loss_func, heatmaps, targets, cap_len, config)
targets = targets.detach().cpu()
heatmaps = heatmaps.detach().cpu()
if args.eval_per_turn:
assert B==1
# per turn evaluation
last_heats = []
for turn_id in range(cap_len.item()):
last_heats = heatmaps[turn_id, 0, ...].view(B, num_maps, h, w)
le, ep = distance_from_pixels(args, num_maps, last_heats, conversions, info_elem, mode)
save_le_name = os.path.join(args.result_dir, f'{mode}_ep_{epoch}_input_{i}_t{turn_id+1}.txt')
np.savetxt(save_le_name, le)
else:
# final prediction evaluation
last_heats = []
for i, turn_id in enumerate(cap_len):
#import ipdb; ipdb.set_trace()
last_heats.append(heatmaps[turn_id-1, 0, ...])
last_heats = torch.cat(last_heats)
last_heats = last_heats.view(B, num_maps, h, w)
# get metrics
if args.use_euclid:
le, ep = euclid_distance_from_pixels(args, num_maps, last_heats, conversions, info_elem, mode)
else:
le, ep = distance_from_pixels(args, num_maps, last_heats, conversions, info_elem, mode)
#import ipdb; ipdb.set_trace()
acc0 = accuracy(le, 0)
acc5 = accuracy(le, 5)
le_list.extend(le)
mean_le = np.mean(le)
metric_logger.update(loss=loss.item())
metric_logger.update(le=mean_le)
metric_logger.update(acc0=acc0)
metric_logger.update(acc5=acc5)
# le for intermediate predictions
if args.inter_le:
heat_list = defaultdict(list)
conv_list = defaultdict(list)
info_list = defaultdict(list)
path, levels, scan_names, episode_ids, true_viewpoints = info_elem
for i, gt_turn in enumerate(cap_len):
for t in range(gt_turn):
new_elem = [path[i],levels[i],scan_names[i],episode_ids[i],true_viewpoints[i]]
key = f'{gt_turn.item()}_{t}'
heat_list[key].append(heatmaps[t, i, ...])
conv_list[key].append(conversions[i])
info_list[key].append(new_elem)
for key, val in heat_list.items():
val = torch.cat(val)
val = val.view(-1,num_maps,h,w)
le, ep = distance_from_pixels(
args, num_maps, val, conv_list[key], info_list[key], mode, inter_le=True
)
le_dict[key].extend(le)
else: # Prec Conf at gt pixel
# for key, val in zip(cap_len, le):
# le_dict[key.item()].append(val)
tar_list = defaultdict(list)
pred_list = defaultdict(list)
for i, gt_turn in enumerate(cap_len):
for t in range(gt_turn):
key = f'{gt_turn.item()}_{t}'
tar_list[key].append(targets[i])
pred_list[key].append(heatmaps[t,i,...])
for key, val in pred_list.items():
preds = torch.cat(val)
tars = torch.cat(tar_list[key])
pc = confidence_from_pixels(args, preds, tars, mode)
#import ipdb; ipdb.set_trace()
le_dict[key].extend(pc)
if args.eval_per_turn:
print('per turn le done.')
return None, None, None
# save le_list
le_savename = os.path.join(args.result_dir, f"le_{mode}_epoch{epoch}.npy")
np.save(le_savename, le_list)
lprint(f"le list saved to {le_savename}", log)
# log metrics to wandb
avg_dict = metric_logger.get_avg()
if wandb is not None:
wandb.log({"acc0_"+mode: avg_dict['acc0'],
"acc5_"+mode: avg_dict['acc5'],
"loss_"+mode: avg_dict['loss'],
"le_"+mode: avg_dict['le'],
})
eval_stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
return metric_logger.global_avg(), eval_stats, le_dict
def main(args, config, wandb=None):
#utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
#### Model ####
print(f"Creating model {config['model_ver']}")
if config['model_ver']==1: # Bert as base, ViT as hidden
model = blip_decoder(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'], prompt=config['prompt'], config=config)
elif config['model_ver']==2: # ViT as base, Bert as hidden
model = blip_decoder2(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'], prompt=config['prompt'], config=config)
elif config['model_ver']==3: # Standard ViT and Bert, new Multi
model = LED_Base(image_size=config['image_size'], vit=config['vit'], config=config)
tmodel = None
#### Dataset ####
print("Creating LED dataset")
loader = Loader(args, config)
loader.build_dataset(file="train_expanded_data.json", tokenizer=model.tokenizer, image_processor=model.image_processor)
loader.build_dataset(file="valSeen_data.json", tokenizer=model.tokenizer, image_processor=model.image_processor)
loader.build_dataset(file="valUnseen_data.json", tokenizer=model.tokenizer, image_processor=model.image_processor)
train_iterator = DataLoader(
loader.datasets["train"],
batch_size=config['batch_size'],
shuffle=not config['debug'],
num_workers=8,
)
valSeen_iterator = DataLoader(
loader.datasets["valSeen"],
batch_size=config['batch_size_test'],
shuffle=False,
num_workers=4,
)
valUnseen_iterator = DataLoader(
loader.datasets["valUnseen"],
batch_size=config['batch_size_test'],
shuffle=False,
num_workers=4,
)
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'])
loss_func = torch.nn.KLDivLoss(reduction="none")
if args.evaluate:
# load ckpt
state_dict = torch.load(args.ckpt_path)
epoch = state_dict['epoch']
model.load_state_dict(state_dict['model'])
model = model.to(device)
print(f'loaded state dict via {args.ckpt_path}')
if args.use_euclid:
log = open(os.path.join(args.result_dir, 'euc_log.txt'), 'a')
else:
log = open(os.path.join(args.result_dir, 'log.txt'), 'a')
eval_modes = ['valSeen', 'valUnseen']
for eval_i, eval_iterator in enumerate([valSeen_iterator, valUnseen_iterator]):
if eval_i==0:
continue
lprint(f"Start eval {eval_modes[eval_i]} {epoch}", log)
import time
st = time.time()
val_str, val_stat, val_led = evaluate(model, eval_iterator, optimizer, epoch, device, loss_func, config, args, mode=eval_modes[eval_i], log=log, wandb=wandb)
lprint(val_str, log)
eval_time = time.time()-st
eval_time = eval_time / len(eval_iterator) / 60
print(eval_time)
if args.eval_per_turn:
continue
if args.inter_le:
lprint('start intermediate evaluation', log)
size_dict={}
mean_dict={}
# average le dict
for key, val in val_led.items():
size_dict[key] = len(val)
mean_dict[key] = np.mean(val)
lprint(f'Turn:{key} Total:{size_dict[key]} LE:{mean_dict[key]}', log)
else:
lprint("start fine-grained evaluation", log)
size_dict={}
mean_dict={}
for key, val in val_led.items():
size_dict[key] = len(val)
mean_dict[key] = np.mean(val)
lprint(f'Len:{key} Total:{size_dict[key]} LE:{mean_dict[key]}', log)
lprint('evaluation finished', log)
return
# training
model = model.to(device)
log = open(os.path.join(args.result_dir, 'log.txt'), 'a')
import time
for epoch in range(0, config['max_epoch']):
start_time = time.time()
lprint('----------------------------------------', log)
#cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
lprint(f"Start training {epoch}", log)
train_str = train(model, train_iterator, valSeen_iterator, optimizer, epoch, device, loss_func, config, args, log=log, wandb=wandb, tmodel=tmodel)
lprint(train_str, log)
lprint(f"Start eval valSeen {epoch}", log)
valSeen_str, valSeen_stat, valSeen_led = evaluate(model, valSeen_iterator, optimizer, epoch, device, loss_func, config, args, mode='valSeen', log=log, wandb=wandb)
lprint(valSeen_str, log)
lprint(f"Start eval valUnseen {epoch}", log)
valUnseen_str, valUnseen_stat, valUnseen_led = evaluate(model, valUnseen_iterator, optimizer, epoch, device, loss_func, config, args, mode='valUnseen', log=log, wandb=wandb)
lprint(valUnseen_str, log)
save_obj = {
'model': copy.deepcopy(model.state_dict()),
'optimizer': optimizer.state_dict(),
'config': config,
'epoch': epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, f'checkpoint_{epoch}.pth'))
epoch_time = time.time()-start_time
lprint(f'Epoch {epoch} time: {epoch_time/60:.4f} min', log)
lprint('----------------------------------------', log)
torch.cuda.empty_cache()
def make_names(args, config):
new_name = config['project_name']
if config["debug"]:
new_name="debug_"+new_name
if config['freeze_visual']:
new_name+='_freeze'
else:
new_name+=f'_{config["arch"]}'
if config['reuse_hidden']:
new_name += '_reuse'
if config['use_prev_est']:
new_name+=f'_{config["fusion_prev_est"]}'
try:
new_name += f'_depth{config["multi_depth"]}_dis{str(args.discount)}_{config["loss_reduce"]}'
if config['per_pixel_sigmoid']:
new_name+=f'_ad{config["aux_discount"]}_{config["loss_reduce_aux"]}_aw{config["aux_loss_w"]}'
if config["new_bimap"]:
new_name+='_newBimap'
except:
pass
if "dialog_cliping" in config and config["dialog_cliping"]:
new_name+=f'_dialogClip'
assert config["dialog_history"]==True
assert config["reuse_hidden"]==False
assert config["use_prev_est"]==False
if "new_bimap" not in config:
config["new_bimap"] = False
if "to_paper" in config and config["to_paper"]:
config["batch_size"]=1
config["batch_size_test"]=1
if args.use_euclid:
new_name+=f'_euclid'
return new_name
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/led_config.yaml')
parser.add_argument('--output_dir', default='output')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--use_euclid', action='store_true')
parser.add_argument('--inter_le', action='store_true')
parser.add_argument('--to_paper', action='store_true')
parser.add_argument('--eval_per_turn', action='store_true')
parser.add_argument('--device', default='cuda')
parser.add_argument('--ckpt_dir', type=str, default='')
parser.add_argument('--ckpt_path', type=str, default='')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--map_h', default=700, type=int)
parser.add_argument('--map_w', default=1200, type=int)
parser.add_argument('--discount', default=0.0, type=float, help='decay factor')
parser.add_argument('--aux_w', default=0.0, type=float, help='aux loss weight')
parser.add_argument('--max_len', default=200, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=False, type=bool)
parser.add_argument("--data_dir", type=str, default="./led_data/way_splits/")
parser.add_argument("--image_dir", type=str, default="./led_data/floorplans/")
parser.add_argument("--embedding_dir", type=str, default="./led_data/word_embeddings/")
parser.add_argument("--connect_dir", type=str, default="./led_data/connectivity/")
parser.add_argument(
"--geodistance_file", type=str, default="./led_data/geodistance_nodes.json"
)
parser.add_argument("--ds_percent", type=float, default=1.0)
parser.add_argument("--max_floors", type=int, default=5)
args = parser.parse_args()
if args.evaluate:
assert os.path.exists(args.ckpt_dir)
for file in os.listdir(args.ckpt_dir):
if file.endswith(".pth"):
args.ckpt_path = os.path.join(args.ckpt_dir, file)
print(args.ckpt_path)
elif file.endswith('.yaml'):
args.config = os.path.join(args.ckpt_dir, file)
print(args.config)
global_config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
if args.to_paper:
global_config["to_paper"]=True
if args.discount > 0:
global_config['discount'] = args.discount
global_config['aux_discount'] = args.discount
if args.aux_w > 0:
global_config['aux_loss_w'] = args.aux_w
global_config['project_name'] = make_names(args, global_config)
if args.evaluate:
global_config["batch_size_test"] = 1
print(global_config['project_name'])
if args.evaluate:
args.output_dir = os.path.join(args.ckpt_dir, 'test')
else:
args.output_dir = os.path.join(global_config['output_dir'], global_config['project_name'])
args.result_dir = os.path.join(args.output_dir, 'result')
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(args.result_dir, exist_ok=True)
if not args.evaluate:
import shutil
shutil.copy(args.config, args.output_dir)
wandb = None
main(args, global_config, wandb)