-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathseeing.py
603 lines (426 loc) · 14 KB
/
seeing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import numpy as np
from scipy.interpolate import interp1d
from scipy.integrate import dblquad
from scipy.optimize import brentq
class CircularPSF(object):
def _get_args(self, wave):
"""Get arguments for _func [to be implemented]
Parameters
----------
wave : array of floats
wavelength
Returns
-------
args : tuple
arguments for corresponding _func method
"""
msg = "Method '_get_args' not implemented in class {0}"
msg = msg.format(self.__class__)
raise NotImplementedError(msg)
def _func(self, r, *args):
"""PSF function [to be implemented]
Parameters
----------
r : array of floats
radius
*args: extra arguments defined in _get_args
Returns
-------
y : array of floats
function at each radius
"""
msg = "Method '_func' not implemented in class {0}"
msg = msg.format(self.__class__)
raise NotImplementedError(msg)
def _integral(self, r, *args):
"""2D polar integral of function
Parameters
----------
r : array of floats
radius
*args: extra arguments defined in _get_args
Returns
-------
y : array of floats
integrated function from radius=0 to radius=r
"""
gfun = lambda x: -np.sqrt(r**2. - x**2.)
hfun = lambda x: np.sqrt(r**2. - x**2.)
#NB dblquad expects dx and dy to be swapped
integrand = lambda dy, dx: self._func(np.sqrt(dx**2. + dy**2.), *args)
y, _ = dblquad(integrand, -r, r, gfun, hfun)
return y
def __call__(self, r, wave):
"""Calcualate the PSF at a given radii and wavelength
Parameters
----------
r : array of floats
radii [arcsec]
wave : float
wavelength [Angstrom]
Returns
-------
profile : array of floats
Normalized PSF computed at each radius
"""
args = self._get_args(wave)
profile = self._func(r, *args)
return profile
def flux_enclosed(self, r, wave):
"""Calculate PSF enclosed within a given radius
Parameters
----------
r : float
radius
wave : float
wavelength
Returns
-------
y : fraction of flux enclosed (total = 1)
"""
args = self._get_args(wave)
y = self._integral(r, *args)
return y
def radius_enclosing(self, fraction, wave):
"""Calculate radius that encloses a given fraction of total flux
Parameters
----------
fraction : float
fraction of flux enclosed (normalized to 1)
wave : float
wavelength
Returns
-------
r : radius enclosing a given fraction of flux
Raises
------
RuntimeError : if enlosed radius is very large
"""
args = self._get_args(wave)
f = lambda r, x: self._integral(r, *args) - x
try:
r = brentq(f, 0., 20., args=(fraction,))
except ValueError:
raise RuntimeError("PSF is very broad") # if necessary increase upperbound in brentq function
return r
class NonCircularPSF(object):
def _get_args(self, wave):
"""Get arguments for _func [to be implemented]
Parameters
----------
wave : array of floats
wavelength
Returns
-------
args : tuple
arguments for corresponding _func method
"""
msg = "Method '_get_args' not implemented in class {0}"
msg = msg.format(self.__class__)
raise NotImplementedError(msg)
def _func(self, dx, dy, *args):
"""PSF function [to be implemented]
Parameters
----------
dx : array of floats
x-axis displacement
dy : array of floats
y-axis displacement
*args: extra arguments defined in _get_args
Returns
-------
y : array of floats
function at each radius
"""
msg = "Method '_func' not implemented in class {0}"
msg = msg.format(self.__class__)
raise NotImplementedError(msg)
def _integral(self, r, *args):
"""2D polar integral of function
Parameters
----------
r : float
radius
*args: extra arguments defined in _get_args
Returns
-------
y : float
integrated function from radius=0 to radius=r
"""
gfun = lambda x: -np.sqrt(r**2. - x**2.)
hfun = lambda x: np.sqrt(r**2. - x**2.)
#NB dblquad expects dx and dy to be swapped
integrand = lambda dy, dx: self._func(dx, dy, *args)
y, _ = dblquad(integrand, -r, r, gfun, hfun)
return y
def __call__(self, dx, dy, wave):
"""Calcualate the PSF at a given radii and wavelength
Parameters
----------
dx : array of floats
x-axis displacement
dy : array of floats
y-axis displacement
wave : float
wavelength [Angstrom]
Returns
-------
profile : array of floats
Normalized PSF computed at each radius
"""
args = self._get_args(wave)
profile = self._func(dx, dy, *args)
return profile
def flux_enclosed(self, r, wave):
"""Calculate PSF enclosed within a given radius
Parameters
----------
r : float
radius
wave : float
wavelength
Returns
-------
y : fraction of flux enclosed (total = 1)
"""
args = self._get_args(wave)
y = self._integral(r, *args)
return y
def radius_enclosing(self, fraction, wave):
"""Calculate radius that encloses a given fraction of total flux
Parameters
----------
fraction : float
fraction of flux enclosed (normalized to 1)
wave : float
wavelength
Returns
-------
r : radius enclosing a given fraction of flux
Raises
------
RuntimeError : if enlosed radius is very large
"""
args = self._get_args(wave)
f = lambda r, x: self._integral(r, *args) - x
try:
r = brentq(f, 0., 20., args=(fraction,))
except ValueError:
raise RuntimeError("PSF is very broad") # if necessary increase upperbound in brentq function
return r
#FUTURE:
#class VariablePSF(object):
#
# def __call__(self, dx, dy, x0, y0, wave):
# """Calcualate the PSF at a given distance, position and wavelength"""
#
# msg = "Method '__call__' not implemented in class {0}".format(self.__class__)
# raise NotImplementedError(msg)
#
# def radius_enclosing(self, fraction, x0, y0, wave):
# """Calculate radius that encloses a given fraction of total flux at a given position"""
#
# msg = "Method 'radius_enclosing' not implemented in class {0}".format(self.__class__)
# raise NotImplementedError(msg)
def gauss_fwhm_to_sigma(fwhm):
"""Convert FWHM to standard deviation
Parameters
----------
fwhm : float
Full-Width Half Max
Returns
-------
sigma : float
Standard deviation of Gaussian
"""
sigma = fwhm / (2. * np.sqrt(2. * np.log(2.)))
return sigma
def moffat_fwhm_to_alpha(fwhm, beta):
"""Convert FWHM to Moffat alpha parameter
Parameters
----------
fwhm : float
Full-Width Half Max
beta : float
Moffat beta parameter
Returns
-------
alpha : float
Corresponding Moffat alpha parameter
"""
alpha = fwhm / (2. * np.sqrt(2.**(1./beta) - 1.))
return alpha
class GaussianPSF(CircularPSF):
def __init__(self, wave, fwhm):
"""Gaussian point spread function
Performs linear interpolation of FWHM parameter as a function of
wavelength
Parameters
----------
wave : array of floats
wavelength [Angstrom], independent varible for interpolation
fwhm : array of floats
full-width half max [arcsec], dependent varible for interpolation
"""
self.wave = wave
self.fwhm = fwhm
self.interp_fwhm = interp1d(self.wave, self.fwhm, copy=True)
def _get_args(self, wave):
fwhm = self.interp_fwhm(wave)
sigma = gauss_fwhm_to_sigma(fwhm)
args = (sigma,)
return args
def _func(self, r, sigma):
"""Gaussian function
Parameters
----------
r : array of floats
radius
sigma : float
Standard deviation
Returns
-------
y : array of floats
Gaussian function at each radius
"""
norm = 1. / (2. * np.pi * sigma**2.)
y = norm * np.exp(-0.5 * (r/sigma)**2.)
return y
# overload _integral because can be calculated analytically
def _integral(self, r, sigma):
"""2D polar integral of Gaussian function
Parameters
----------
r : array of floats
radius
sigma : float
Standard deviation
Returns
-------
y : array of floats
integrated Gaussian function from r=0 to r=radius
"""
y = 1. - np.exp(-0.5 * (r/sigma)**2.)
return y
class MoffatPSF(CircularPSF):
def __init__(self, wave, fwhm, beta):
"""Moffat point spread function
Performs linear interpolation of FWHM and Beta parameters as a function
of wavelength
Parameters
----------
wave : array of floats
wavelength [Angstrom], independent varible for interpolation
fwhm : array of floats
full-width half max [arcsec], dependent varible for interpolation
beta : array of floats
Moffat beta parameter, dependent varible for interpolation
"""
self.wave = wave
self.fwhm = fwhm
self.beta = beta
self.interp_fwhm = interp1d(self.wave, self.fwhm, copy=True)
self.interp_beta = interp1d(self.wave, self.beta, copy=True)
def _get_args(self, wave):
fwhm = self.interp_fwhm(wave)
beta = self.interp_beta(wave)
alpha = moffat_fwhm_to_alpha(fwhm, beta)
args = (alpha, beta)
return args
def _func(self, r, alpha, beta):
"""Moffat function
Parameters
----------
r : array of floats
radius
alpha : float
Corresponding Moffat alpha parameter
beta : float
Moffat beta parameter
Returns
-------
y : array of floats
Moffat function at each radius
"""
y = (beta-1.) / (np.pi*alpha**2.) * (1. + (r/alpha)**2.)**(-beta)
return y
# overload _integral because can be calculated analytically
def _integral(self, r, alpha, beta):
"""2D polar integral of Moffat function
Parameters
----------
r : array of floats
radius
alpha : float
Corresponding Moffat alpha parameter
beta : float
Moffat beta parameter
Returns
-------
y : array of floats
integrated Moffat function from r=0 to r=radius
"""
#Thanks WolframAlpha!
y = 1. - ((1.+(r/alpha)**2.) / (1. + (r/alpha)**2.)**beta)
return y
class EllipticalGaussianPSF(NonCircularPSF):
def __init__(self, wave, fwhm_a, fwhm_b, pa):
"""Elliptical Gaussian point spread function
Performs linear interpolation of FWHM parameter as a function of
wavelength
Parameters
----------
wave : array of floats
wavelength [Angstrom], independent varible for interpolation
fwhm_a : array of floats
major axis full-width half max [arcsec], dependent varible for
interpolation
fwhm_b : array of floats
minor axis full-width half max [arcsec], dependent varible for
interpolation
pa : array of floats
position angle of major axis (North = 0, East = 90) [degrees],
dependent varible for interpolation
"""
self.wave = wave
self.fwhm_a = fwhm_a
self.fwhm_b = fwhm_b
self.pa = pa
self.interp_fwhm_a = interp1d(self.wave, self.fwhm_a, copy=True)
self.interp_fwhm_b = interp1d(self.wave, self.fwhm_b, copy=True)
self.interp_pa = interp1d(self.wave, self.pa, copy=True)
def _get_args(self, wave):
fwhm_a = self.interp_fwhm_a(wave)
fwhm_b = self.interp_fwhm_b(wave)
sigma_a = gauss_fwhm_to_sigma(fwhm_a)
sigma_b = gauss_fwhm_to_sigma(fwhm_b)
pa = self.interp_pa(wave)
args = (sigma_a, sigma_b, pa)
return args
def _func(self, dx, dy, sigma_a, sigma_b, pa):
"""Elliptical Gaussian function
Parameters
----------
dx : array of floats
x-axis displacement
dy : array of floats
y-axis displacement
sigma_a : float
major axis standard deviation
sigma_b : float
minor axis standard deviation
pa : float
position angle of major axis
Returns
-------
y : array of floats
Gaussian function at each dx, dy position
"""
theta = np.radians(90. + pa)
da = dx * np.cos(theta) - dy * np.sin(theta)
db = dx * np.sin(theta) + dy * np.cos(theta)
norm_a = 1. / np.sqrt(2. * np.pi * sigma_a**2.)
norm_b = 1. / np.sqrt(2. * np.pi * sigma_b**2.)
y = (norm_a * norm_b *
np.exp(-0.5 * ((da/sigma_a)**2. + (db/sigma_b)**2.)))
return y