Glacial Microarchitecture

Eric Smith

October 28, 2019

Chapter 1

Introduction

This document describes the microarchitecture of Glacial, a highly vertically-
microcoded processor. When running the standard microcode, Glacial imple-
ments a RISC-V RV32I processor. However, the Glacial microarchitecture may
be useful for other applications unrelated to RISC-V.

In the rest of this document, the use of the name ” Glacial” will be in refer-
ence to the Glacial microarchitecture, without regard to the normal microcode
implementing the RISC-V architecture.

1.1 Limitations

Glacial was designed to use minimal hardware resources, e.g., FPGA logic ele-
ments, and was designed to support hand-written assembly code, rather than
a high-level language. It is missing many features commonly present in other
processor architectures. For example:

e There is an adc instruction (add with carry), but no subtract instruction,
because subtraction can be accomplished by complementing the subtra-
hend then adding.

e There are instructions for logical and and exclusive or, but not for logical
or. By De Morgan’s law, the logical and and exclusive or instructions can
be used to accomplish a logical or function.

e There is a postincrement address mode, but no corresponding predecre-
ment mode

e Glacial has a single memory address space of 64 KiB. Glacial can only
execute instructions from the first 4 KiB of the memory; the remaining 60
KiB is used for data (or macroinstructions) only.

e The X index register, and instructions using absolute addressing of data,
can only address the first 256 bytes of memory. The rest of memory can
only be accessed as data by use of the Y index register.

e There is only one level of subroutine stack.

1.2 Simple architectural enhancements

Several relatively simple architectural enhancements could be made, which might
make Glacial more suitable for other applications:

e More index registers could be added. The instruction encoding for the in-
dexed addressing modes currently does not use bits 7..1 of the instruction.

e The address space for data could be increased, e.g., to 16 MiB or 4 GiB, by
making the Y index register (and/or other added index registers) wider.

e The size of the return stack could be increased to allow multiple levels of
subroutine calls.

e If it is desired to use ROM starting at address 0, the X index register
could have a fixed but non-zero high byte to address RAM. This would
be similar to the 6502 microprocessor’s stack pointer, which is 8 bits, but
has a high byte of 0x01.

Chapter 2

Programmer’s Model

Glacial has six programmer-visible registers:

’ register \ bits ‘
program counter | 12 (LSB always zero)
return address | 12 (LSB always zero)
x index 8
y index 16
accumulator
carry flag 1

Glacial has ten basic instructions, though one of them, opr (operate) per-
forms various miscellaneous functions:

’ mnemonic \ description
opr operate (miscellaneous functions)
store store the accumulator into a memory byte
load load a byte from memory into the accumulator
and logically and a byte from memory into the accumulator
XOr logically exclusive or a byte from memory into the accumulator
adc add a byte from memory and carry into the accumulator
jump unconditional jump
call unconditional subroutine call
skb skip next instruction, conditional on the state of an accumulator bit
br conditional branch

Glacial has five basic memory addressing modes, not all of which are appli-
cable to all instructions:

e immediate 8-bit

absolute 8-bit
index register
index register with postincrement

branch, absolute 13-bit address, even addresses only

Chapter 3

Instruction Formats and
Memory Addressing Modes

3.1 immediate 8-bit

The immediate addressing mode embeds an 8-bit operand direction in the in-
struction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

’ opcode | immediate operand

3.2 absolute 8-bit

The absolute addressing mode allows access to any byte within the first 256
bytes of memory (0x0000 through 0x00ff) by a fixed address embedded in the
instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

’ opcode | absolute address

3.3 index register

The indexed addressing mode allows access to the byte of memory pointed to
by an index register, x or y. The x index register can only point to the first 256
bytes of memory (0x0000 through 0x00ff).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode 0000 0 0 o0dy

The idx field value is 0 for the x index register, and 1 for the y index register.

3.4 index register autoincrement

The index register autoincrement addressing mode allows access to the byte of
memory pointed to by an index register, x or y, and after the access, increments
the index register. The x index register can only point to the first 256 bytes of
memory (0x0000 through 0x00ff), and if incremented past 0xff, x will wrap to
0x0000.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| opcode [0 000 0 0 ody

The idx field value is 0 for the x index register, and 1 for the y index register.

3.5 branch

The branch instructions include 11 bits of a 12-bit absolute address of the branch
target. Since instructions must be 16-bit aligned, the branch target absolute
address is always even, so the LSB is omitted from the instruction encoding.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode absolute address / 2 ‘

Chapter 4

Instructions

4.1 opr: operate

The opr (operate) instruction is a catch-all for miscellaneous functions, with a
bit-mapped opcode containing bits or bitfields encoding those functions. This
allows the combination of multiple functions into a single instruction. This tech-
nique was used in the 1960s and 1970s by the Digital Equipment Corporation
18-bit and 12-bit minicomputers such as the PDP-1 and PDP-8, where it was
called "microcoding” (similar to horizontal microcode).

14 13

15 12 11 10 9 8 7 6 5 4 3 2 1 0
’0 0 0 0| rsv |utx|3p(1ret| rot | cy | idx ‘

’ bits \ mnemonic \ function ‘
11..9 | reserved
8 utx UART transmit LSB of accumulator
7 apc add accumulator to PC
6 ret return from subroutine
5.4 | 00 = nop, 10 =rlc, 11 = rrc | rotate left or right with carry
3..2 | 00 = nop, 10 = clc, 11 = sec | clear or set carry
1..0 00 = nop, 10 = tax, 11 = tay | transfer accumulator to index register

Some useful combinations:

’ opcode | functions \ mnemonic \ function
0x028 | clc rol Isl logical shift left accumulator
0x038 clc ror Isr logical shift right accumulator
0x0cO | ret apc retadd return skipping word count in accumulator
0x13c utx sec rrc | uarttxr UART transmit LSB of accumulator

The carry operations are executed before the rotate operations.

The tax and tay operations transfer the accumulator contents to the index
register. Since x is an 8-bit register, tax simply performs a copy. The y register,
on the other hand, is a 16-bit register, so in order to allow loading the entire y
register, each use of the tay operation shifts y right by eight bits and puts the
accumulator value into the high 8 bits of y.

For example, if the y register contains 0x1234 and the accumulator contains
0x78, after one tay instruction the y register will contain 0x7812.

The utx operation is specifically intended for use in the uarttxr combination,
which is used for a bit-banged UART transmit output. This was particularly
useful for the RISC-V conformance tests, but may not be suitable for a real
application. The uarttxr instruction should be used once with the LSB of the
accumulator containing zero, to generate a start bit, then the byte to be trans-
mitted should be loaded into the accumulator, and uarttxr executed nine more
times, with appropriate delays between uarttxr instructions for the serial bit
timing desired.

The apc operation is useful for jump tables. Combined with ret to form the
retadd instruction, it is useful as a return from subroutines that have multiple
exits, with the accumulator specifying a number of instructions to skip beyond
the normal return location.

4.2 store: store accumulator to memory

The store instruction is used to store the contents of the accumulator register
into a byte of memory.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 01 0 00 O| absolute address ‘
absolute
dexed]00100000|0000000|x\
]00110000|0000000|x\

indexed postincrement

4.3 load: load accumulator from memory

The load instruction is used to load the contents of a byte of memory into the
accumulator register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
immediate ’0 1 0 00 0 0 ()| immediate operand ‘
’ 01 01 0 0 0O | absolute address ‘
absolute
dexed |01 1000 00[000000 0]x]

1 110000000000 0[x

indexed postincrement ’

4.4 and: and memory with accumulator

The and instruction is used to logically and the contents of a byte of memory

into the accumulator register.

15 14 13

12

11

10

9

8 7 6 5 4 3 2 1 0

e diate 010 0 0 0 0 1| immediate operand ‘
beolgte |01 0 1 0 0 0 1] absolute address |
dexed |01 10000 1[0000 00 0fx]

(0111000 1[0000000]x]

indexed postincrement

4.5 xor: exclusive or memory with accumulator

The xor instruction is used to logically exclusive-or the contents of a byte of

memory into the accumulator register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
immediate ’0 1 0 0 0 0 1 0| immediate operand ‘
]0 10100 1 0| absolute address \
absolute
imdexed]01100010|0000000|x\
indexed postincrement ’ 111001 0|0 0 000¢0 0|X‘

4.6 adc: add memory to accumulator with carry

The adc instruction is used to add the contents of a byte of memory and the
carry flag into the accumulator register, and will set the carry flag based on the

result of the addition.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
e [0 1 0 0 0 0 1 1] immediate operand |
beolte |01 0 1 0 0 1 1] absolute address |
fdexed |01 1000 1 1[0000 00 0fx]

0111001 1/0000000]x]

indexed postincrement

4.7 jump: unconditional jump

The jump instruction performs an unconditional jump to the target address.

15 14 13 12 0 9

8

7

[

5

4 3 2 1 0

11 1
absolute 1000 0|

absolute address / 2 ‘

4.8 call: unconditional subroutine call

The call instruction pushes the address of the next sequential instruction into
the return register, and branches to the target address.
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

’1 0 0 01 absolute address / 2 ‘

absolute

Glacial normally has only one level of return stack, so nested subroutine calls
will not work.

Returning from a subroutine is accomplished by the “ret” function of the
opr (operate) instruction.

4.9 skb: skip on bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
absolute ’ 1 0 0 1 | i | bit | absolute address
 deed]1010|1| bit |0000000|

indexed postincrement ’1 0 1 1|i| bit |0 00000 0|

The “i” bit determines the polarity of the bit test and the “bit” field deter-
mines which bit of the operand is tested, with 0 being the least significant bit.
The skip will occur if the “i” bit matches the bit being tested.

4.10 br: conditional branch

The conditional branch instruction will branch to the target address if the con-
dition is true. Otherwise execution will continue sequentially.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

’ 11 | ‘cond | absolute address / 2 ‘

absolute

The “cond” field determines which condition is tested.

cond | condition

accumulator non-zero

accumulator zero

no external interrupt

external interrupt

no clock tick
clock tick

|| || OY| = || W|| N | ©

[cond | |
[0 | |
L] |
L2 | |
3 [camy |
4 | |
I |
[6] |
L7 | |

10

