-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathposter.tex
290 lines (283 loc) · 14.1 KB
/
poster.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
%==============================================================================
%== template for LATEX poster =================================================
%==============================================================================
%
%--A0 beamer slide-------------------------------------------------------------
\documentclass[final]{beamer} % use beamer
\usepackage[orientation=portrait,
size=a1, % poster size
scale=0.714 % font scale factor
]{beamerposter} % beamer in poster size
%
%--some needed packages--------------------------------------------------------
\usepackage[american]{babel} % language
\usepackage[utf8]{inputenc} % std linux encoding
%
%==The poster style============================================================
\usetheme{cpbgposter} % our poster style
%--set colors for blocks (without frame)---------------------------------------
\setbeamercolor{block title}{fg=ngreen,bg=white}
\setbeamercolor{block body}{fg=black,bg=white}
%--set colors for alerted blocks (with frame)----------------------------------
%--textcolor = fg, backgroundcolor = bg, dblue is the jacobs blue
\setbeamercolor{block alerted title}{fg=white,bg=hblue}%frame color
\setbeamercolor{block alerted body}{fg=black,bg=hblue!10}%body color
%
%==Titel, date and authors of the poster=======================================
\title{Top background to Supersymmetry searches in dilepton events}
\author{Timothy Brooks (brooks@cern.ch)}
\institute{Royal Holloway, University of London}
\date{\today}
%
%==some usefull qm commands====================================================
% |x>
\newcommand{\ket}[1]{\left\vert#1\right\rangle}
% <x|
\newcommand{\bra}[1]{\left\langle#1\right\vert}
% <x|y>
\newcommand{\braket}[2]{\left< #1 \vphantom{#2}\,
\right\vert\left.\!\vphantom{#1} #2 \right>}
% <x|a|y>
\newcommand{\sandwich}[3]{\left< #1 \vphantom{#2 #3} \right|
#2 \left|\vphantom{#1 #2} #3 \right>}
% d/dt
\newcommand{\ddt}{\frac{d}{dt}}
% D/Dx
\newcommand{\pdd}[1]{\frac{\partial}{\partial#1}}
% |x|
\newcommand{\abs}[1]{\left\vert#1\right\vert}
% k_{x}
\newcommand{\kv}[1]{\mathbf{k}_{#1}}
%==============================================================================
%==the poster content==========================================================
%==============================================================================
\begin{document}
%--the poster is one beamer frame, so we have to start with:
\begin{frame}[t]
%--to seperate the poster in columns we can use the columns environment
\begin{columns}[t] % the [t] options aligns the columns content at the top
%--the left column-------------------------------------------------------------
\begin{column}{0.28\paperwidth}% the right size for a 3-column layout
%--abstract block--------------------------------------------------------------
\begin{alertblock}{Abstract}
Searches for Supersymmetry with two lepton final states are limited by
backgrounds from events with top quark pairs. Top events mimic many of
the characteristics of events involving supersymmetric particles including
leptons, jets and missing energy. The discovery significance of a search,
then, must account for the top contribution. In
addition, uncertainty in the size of this contribution degrades the
significance of a search. Presented here is a method to measure the top
background from data with a smaller uncertainty than estimates from Monte
Carlo simulations.
\end{alertblock}
\vskip2ex
%--Remarks block----------------------------------------------------------------
\begin{block}{Selection variables}
In searching for events characteristic of Supersymmetry, variables that
strongly descriminate against standard model proccesses are defined. The
event variables used in this analysis are as follows:
\begin{itemize}
\item Missing transverse energy, $E_{T}^{miss} \equiv \left|
\displaystyle\sum\limits_{i}^{N}-\vec{E}_{T,i} \right|$
\vskip1ex
\item Effective mass, $M_{eff} \equiv \displaystyle\sum\limits_{i=1}^{4}
P_{T}^{jet, i} + \displaystyle\sum\limits_{i=1} P_{T}^{lep, i} +
E_{T}^{miss}$
\vskip1ex
\item Transverse sphericity, $S_{T} \equiv \frac{2 \lambda_{2}}{\left(
\lambda_{1} + \lambda_{2} \right)}$ where $\lambda_{1}$ \& $\lambda_{2}$
are eigenvalues of the sphericity tensor (see Ref.\cite{CSCSUSY}).
\end{itemize}
\vskip1ex
Events involving supersymmetric particles are expected to yeild high
effective masses, significant missing energy and have uniform sphericities
up to 1. In addition to these variables, multiplicities and transverse
momenta $\left(P^{T}\right)$ for individual particles detected in events
are part of selection. Below is a selection criteria for events with two
leptons.
\end{block}
\vskip1ex
%--features block---------------------------------------------------------------
\begin{block}{Sample selection}
Fig.~\ref{fig:susydoubledecay} is an example final state that this search
would be sensitive to. The final state leaves 2 leptons, 2 light quarks and
missing energy in the form of neutrinos and the lightest supersymmetric
particle (LSP), in this model, the neutralino. Reference \cite{7tevNote}
demonstrates searches for events including 0, 1 and 2 leptons in the final
state. The search in this analysis, with 2 oppositely signed leptons, is
further broken down into 3 selections for events with at least 2, 3 or 4
jets. These selections are defined as follows:
\begin{enumerate}
\item Exactly two leptons with $P_{T} > 10$~GeV and opposite charge.
\item $\geq [2,3,4]$ jets with $P_{T} > [50,40,40]$~GeV and a leading jet
$P_{T} > [180,100,100]$~GeV
\item Missing transverse energy $E_{T}^{miss} > 80$~GeV.
\item $\Delta\phi( jet_{i},E_{T}^{miss} ) > 0.2$ for the $[2,3,3]$ leading
jets.
\item $E_{T}^{miss} > [0.3,0.25,0.2] \times M_{eff}$.
\item Transverse sphericity, $S_{T} > 0.2$.
\end{enumerate}
The distribution of transverse sphericity before the last cut is shown in
Fig.~\ref{fig:Canvas2j} and Fig.~\ref{fig:Canvas4j}. This shows the higher
purity in the selected region to the right. Using these cuts, we can predict
the expected number of signal and background events from Monte Carlo.
\end{block}
\vskip1ex
\begin{block}{Monte Carlo results}
Table \ref{tb:results} shows signal and background expectation values
from Monte Carlo analysis normalised to one inverse femtobarn. These
values are consistent with the findings of \cite{7tevNote}. Samples analysed
at $7$~TeV with full GEANT4 ATLAS detector simulation and reconstruction:
\begin{itemize}
\item SUSY benchmark point 4 (JIMMY) 50,000 events.
\item $t\bar{t}$ produced with (POWHEG + PYTHIA) 200,000 events.
\item $WZ$ + jets produced with (ALPGEN + JIMMY) 35,000 events.
\end{itemize}
\begin{table}
\begin{tabular}{|r|c | c | c|}\hline
& 2jet & 3jet & 4jet \\
\hline
Signal (SU4) & 38.82 & 112.74 & 90.76 \\
Background ($t\bar{t}$) & 3.48 & 37.89 & 20.90 \\
\hline
\multicolumn{4}{|c|}{ATLAS work in progress} \\
\hline
\end{tabular}
\caption{Signal and background values for 2, 3 \& 4 jet analyses.}
\label{tb:results}
\end{table}
\end{block}
\end{column}
\begin{column}{0.60\paperwidth}
\begin{figure}\centering
\begin{minipage}[c]{.45\textwidth}\centering
\includegraphics[width=.9\textwidth]{img/Canvas2j}
\caption{Transverse sphericity distribution after 2 jet selection.}
\label{fig:Canvas2j}
\end{minipage}\hfill
\begin{minipage}[c]{.45\textwidth}\centering
\includegraphics[width=.9\textwidth]{img/Canvas4j}
\caption{Transverse sphericity distribution after 4 jet selection.}
\label{fig:Canvas4j}
\end{minipage}
\end{figure}
\begin{figure}\centering
\begin{minipage}[c]{.3\textwidth}\centering\vfill
\includegraphics[width=.95\textwidth]{img/susydoubledecay}
\caption{A system of supersymmetric decays with 2 leptons and 2 jets in
the final state.}
\label{fig:susydoubledecay}
\end{minipage}
\begin{minipage}[c]{.3\textwidth}\centering\vfill
\includegraphics[width=.95\textwidth]{img/2jttbardecay}
\caption{A di-leptonic $t\bar{t}$ decay with 2 leptons and 2 jets in the
final state.}
\label{fig:2jttbardecay}
\end{minipage}
\begin{minipage}[c]{.3\textwidth}\centering\vfill
\includegraphics[width=.95\textwidth]{img/4jttbardecay}
\caption{A semi-leptonic $t\bar{t}$ decay with 1 lepton and 4 jets in the
final state.}
\label{fig:4jttbardecay}
\end{minipage}
\end{figure}
\begin{block}{Control sample}
The absolute number of events carries a large uncertainty due to our models
of the processes. This section outlines how we can make these selections, but
use data to provide background estimates resulting in lower
uncertainties.
The example Feynmann diagram in Fig.~\ref{fig:susydoubledecay} has a final
state of 2 leptons, 2 light quarks and missing energy in the form of
neutrinos and the lightest supersymmetric particle (LSP), in this model, the
neutralino. For a selection optimised for events like these, we can estimate
the top background by forming a control sample from a region where the
background is strongly enhanced. For a search channel of $N$ jets and $M$
leptons, we can look into a channel with $N+2$ jets and $M-1$ leptons. In top
decay systems, this selects events where a W boson from a top decays
leptonically in the search channel, and hadronically in a corresponding event
in the control region.
In the $N=2, M=2$ search channel, $t\bar{t}$ with a
final state such as Fig.~\ref{fig:2jttbardecay} is the main background to the
search. The control sample can be formed with a selection for events where
$N=4, M=1$. This region would be composed mostly of events with the topology
of Fig.~\ref{fig:4jttbardecay}.
For the events in the control sample, we can simulate the kinematic variables
for top events in the signal region by attempting to identify a pair of
jets consistent with coming from a W. Replacing these with a simulated lepton
and neutrino, we should reproduce a sample consistent with the background of
the signal region.
% and then we put in two normal sized columns
\end{block}
\vskip2ex
%--Examples block---------------------------------------------------------------
\begin{block}{Analysis strategy}
After preparing a search and a control sample, we must relate the number of
events in the control sample to the number expected under a background only
hypothesis. A ratio can be formed between the samples as
\begin{equation}
\tau = \frac{n\left(t\bar{t}\text{ accepted
in }N+2\text{ jet, }M-1\text{ lepton
selection}\right)}{n\left(t\bar{t}\text{ accepted
in }N\text{ jet, }M\text{ lepton selection}\right)}.
\label{eq:ratio}
\end{equation}
Having estimated $\tau$ from data, the observation of experimental data can
be modelled with Poisson statistics. The control region $m$ has expectation
value,
\begin{equation}
E[m] = \tau b,
\end{equation}
where $b$ is the background to the search selection and $\tau$ is per
Eq.\ref{eq:ratio}. Using this value of $b$, the signal expectation is;
\begin{equation}
E[n] = \mu s + b.
\end{equation}
Observing $\mu$ with a positive value indicates a discovery of beyond the
standard model physics. Uncertainty from the absolute normalisation of the
Monte Carlo is removed, only the relative uncertainty and the statistical
error impact the measurement. It is expected that the normalisation of the
Monte Carlo has a larger uncertainty than the ratio formed in
Eq.\ref{eq:ratio} such that this analysis will achieve a higher
significance, or make an earlier discovery.
\end{block}
\vskip2ex
\vskip2ex
%--Examples block---------------------------------------------------------------
\begin{block}{Multivariate techniques}
In addition to improving the estimate of backgrounds to the search,
the selection criteria can be optimised to increase signal to background
ratios in the selections. Multivariate techniques combine variables from
events and output one test statistic indicating to what degree the event
appears like signal or background. This can create an selection criteria
with greater significance than cuts on individual variables.
By comparing the output distribution of a multivariate classifier under some
top enhancement cuts and some Supersymmetry enhancing cuts, the model
dependency the classifier may have formed in training on Monte Carlo events
can be limited. The application of boosted decision trees for this role is
under investigation to enhance this analysis.
\end{block}
\vskip2ex
%--Conclusion block-------------------------------------------------------------
%\begin{alertblock}{Conclusion}
%This analysis is under ongoing development but could form an early search
%for supersymmetry. The impact of more backgrounds upon the samples
%must be studied, along with how Supersymmetry may contaminate the
%control sample. Research at royal holloway focuses on optimising selections
%for high purity controls and using multivariate classifiers to reduce
%reliance on Monte Carlo.
%\end{alertblock}
%--References block-------------------------------------------------------------
\begin{alertblock}{References}
\begin{thebibliography}{7}
\small %small is better for refs
\bibitem{7tevNote} The ATLAS collaboration, \textit{Prospects for
Supersymmetry discovery based on inclusive searches at a 7 TeV
centre-of-mass energy with the ATLAS detector}, ATL-COM-PHYS-2010-336.
\bibitem{CSCSUSY} The ATLAS collaboration, \textit{Expected Performance
of the ATLAS Experiment}, CERN-OPEN-2008-020 (pg1514+).
\end{thebibliography}
\end{alertblock}
\end{column}
\end{columns}
\end{frame}
\end{document}