Segment Anything in 3D Medical Images and Videos
[Paper
] [Project
] [Huggingface] [Dataset List
] [3D Slicer
] [Gradio App
] [Colab
] [BibTeX
]
- Create a virtual environment:
conda create -n medsam2 python=3.12 -y
andconda activate medsam2
- Install PyTorch:
pip3 install torch torchvision
(Linux CUDA 12.4) - Download code
git clone https://github.com/bowang-lab/MedSAM2.git && cd MedSAM2
and runpip install -e ".[dev]"
- Download checkpoints:
sh download.sh
- Optional: Please install the following dependencies for gradio
sudo apt-get update
sudo apt-get install ffmpeg
pip install gradio==3.38.0
pip install numpy==1.26.3
pip install ffmpeg-python
pip install moviepy
Note: Please also cite the raw DeepLesion and LLD-MMRI dataset paper when using these datasets.
- CMD
python medsam2_infer_3D_CT.py -i CT_DeepLesion/images -o CT_DeepLesion/segmentation
- CoLab: MedSAM2_inference_CT_Lesion_Demo.ipynb
- CMD
python medsam2_infer_video.py -i input_video_path -m input_mask_path -o output_video_path
- CoLab: MedSAM2_Inference_Video_Demo.ipynb
python app.py
Specify dataset path in sam2/configs/sam2.1_hiera_tiny_finetune512.yaml
sbatch multi_node_train.sh
- We highly appreciate all the challenge organizers and dataset owners for providing the public datasets to the community.
- We thank Meta AI for making the source code of SAM2 publicly available. Please also cite this paper when using MedSAM2.