Skip to content

bogini/OmniParser-Production

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

OmniParser V2 - Production-Ready GUI Screen Parser

License: CC-BY-4.0 Python 3.8+ FastAPI Modal

A high-performance, production-ready fork of Microsoft's OmniParser for converting GUI screens to structured elements.

Overview

OmniParser V2 converts GUI screenshots into structured data representing UI elements. This production-ready fork builds on Microsoft's original OmniParser with significant performance optimizations and deployment features.

The tool identifies buttons, text fields, icons, and other UI components from images, enabling automated testing, accessibility analysis, and UI documentation. With Modal Labs integration, you can deploy the parser as a scalable, serverless API.

Key Enhancements

  • πŸš€ Thread-safe PaddleOCR Pool: Efficiently manages OCR instances for optimal resource utilization
  • ⚑ Parallel Batch Processing: Process multiple images concurrently with up to 40x throughput
  • ☁️ Modal Labs Integration: One-command deployment to serverless infrastructure
  • πŸ“Š Performance Monitoring: Detailed metrics with actionable optimization suggestions
  • πŸ”„ Parameter Recommendations: Dynamic suggestions for optimal thread pool and batch size configuration
  • πŸ§ͺ FastAPI Development Server: Built-in API for local testing and development

Getting Started

Installation

# Clone repository
git clone https://github.com/bogini/OmniParser-Production
cd OmniParser-Production

# Install dependencies
pip install -r requirements.txt

Download Model Weights

# Create weights directory structure
mkdir -p weights/icon_detect weights/icon_caption_florence

# Download model weights
# For V2 weights:
for f in icon_detect/{train_args.yaml,model.pt,model.yaml} icon_caption/{config.json,generation_config.json,model.safetensors}; do 
  huggingface-cli download microsoft/OmniParser-v2.0 "$f" --local-dir weights
done
mv weights/icon_caption weights/icon_caption_florence

Running OmniParser

Local FastAPI Server

# Start with default settings
python app.py

# Or customize host and port
python app.py --port 7861 --host 0.0.0.0

Deploy to Modal Labs

# Install Modal CLI
pip install modal

# Log in to Modal
modal login

# Deploy the application
modal deploy app.py

After deployment, Modal provides a unique endpoint URL for your serverless API.

API Usage

Endpoints

1. Process Single Image

POST /process_image

Request body:

{
  "image_data": "...",
  "box_threshold": 0.05,
  "iou_threshold": 0.1,
  "use_paddleocr": true,
  "imgsz": 640
}

2. Process Multiple Images In Parallel

POST /process_batched

Request body:

{
  "images": [
    "...",
    "..."
  ],
  "box_threshold": 0.05,
  "iou_threshold": 0.1,
  "use_paddleocr": true,
  "imgsz": 640
}

Configuration Options

Environment Configuration

Parameter Description Default
CONCURRENCY_LIMIT Concurrent requests per container 1
MODAL_CONTAINER_TIMEOUT Container idle timeout (seconds) 500
MODAL_GPU_CONFIG GPU type for Modal deployment A100
API_PORT FastAPI server port 7861
MAX_CONTAINERS Maximum Modal containers 10
MAX_BATCH_SIZE Maximum images per batch 1000
THREAD_POOL_SIZE Thread pool size 40

PaddleOCR Pool Configuration

Parameter Description Default
pool_size Number of PaddleOCR instances 16
lang OCR language en
use_angle_cls Use angle classification false
use_gpu Use GPU for OCR true
max_batch_size Maximum OCR batch size 1024
rec_batch_num Recognition batch number 1024

How to Configure

Set environment variables before starting the server:

# Set environment variables
export THREAD_POOL_SIZE=20
export MAX_BATCH_SIZE=500
export API_PORT=8000

# Start with custom configuration
python app.py

Performance

OmniParser V2 delivers significant performance improvements:

  • Single Image: ~0.55-0.7s processing time per image (1111Γ—2405 pixels with OCR) on an A100 GPU
  • Batch Processing: Near-linear scaling with thread pool size
  • Resource Efficiency: Controlled memory usage with configurable OCR pool

Performance metrics are automatically logged with each request, providing insights for optimization.

Example Output and Logs

The server provides detailed logging that gives insight into the processing pipeline:

2025-02-27 08:26:36,831 - omniparser - INFO - [batch_0b7beafa] Processing batch of 6 images in parallel
2025-02-27 08:26:36,831 - omniparser - INFO - [batch_0b7beafa] Submitting image 1/6 for processing
[...]
2025-02-27 08:26:37,849 - omniparser - INFO - [req_f61fc3be] Request to 'process_image' completed successfully in 1.018s | Steps: {"image_conversion": 0.0, "ocr_processing": 0.307, "icon_detection": 0.598, "response_preparation": 0.112} | {'image_width': 1179, 'image_height': 2556, 'text_elements': 1, 'icons_detected': 5}
[...]
2025-02-27 08:26:40,847 - omniparser - INFO - [batch_0b7beafa] Batch processing complete - Stats: Total: 6 | Successful: 6 | Failed: 0 | Time: 3.98s | Avg: 0.66s per image | Thread pool size: 40 | Parallelism efficiency: 0.11 | Image times - Avg: 2.88s | Min: 1.02s | Max: 4.02s Consider reducing THREAD_POOL_SIZE (current: 40)

Understanding the Logs

Key insights from the logs:

  1. Request Tracking: Each request and batch gets a unique ID
  2. Processing Breakdown: Timing for each processing step
  3. Detection Results: Image dimensions and element counts
  4. Performance Metrics: Efficiency and utilization statistics
  5. Optimization Suggestions: Automatic recommendations based on usage patterns

License

This project is licensed under the CC-BY-4.0 License, the same as the original Microsoft OmniParser repository.

About

Run OmniParser V2 at scale on cloud GPUs

Resources

License

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 53.0%
  • Python 33.2%
  • Shell 8.6%
  • PowerShell 4.8%
  • Other 0.4%