-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnalyze_Template.m
160 lines (149 loc) · 6.67 KB
/
Analyze_Template.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
function [] = Analyze_Template(rootdir)
%% Analyze_Template: Reads in all raw trials, transforms data, and saves in organized structure
% INPUTS:
% root : directory where .mat files are located
% OUTPUTS:
% -
%---------------------------------------------------------------------------------------------------------------------------------
% EXAMPLE INPUT %
% rootdir = 'F:\EXPERIMENTS\Experiment_Wing_CL\mat';
%---------------------------------------------------------------------------------------------------------------------------------
%% Setup Directories %%
%---------------------------------------------------------------------------------------------------------------------------------
% Select files
[FILES, PATH] = uigetfile({'*.mat', 'DAQ-files'}, 'Select files', rootdir, 'MultiSelect','on');
FILES = cellstr(FILES)'; % if only one character array >> store in cell
[~,I,N,U] = GetFileData(FILES,'Fly','Trial','HGain','WGain');
%% Get Data %%
%---------------------------------------------------------------------------------------------------------------------------------
TIME = cell(N{1,1},1);
HEAD.Pos = cell(N{1,1},1);
WING.Pos = cell(N{1,1},1);
PAT.XPos = cell(N{1,1},1);
PAT.YPos = cell(N{1,1},1);
for kk = 1:N{1,1} % fly
for jj = 1:N{1,4} % wing gain
for ii = 1:N{1,3} % head gain
TIME{kk,1}{jj,1}{ii,1} = [];
HEAD.Pos{kk,1}{jj,1}{ii,1} = [];
WING.Pos{kk,1}{jj,1}{ii,1} = [];
PAT.XPos{kk,1}{jj,1}{ii,1} = [];
PAT.YPos{kk,1}{jj,1}{ii,1} = [];
end
end
end
fly = [];
FlyState = [];
AI = [];
fly.Fc = 20;
span = 20:1:2100;
for kk = 1:N{1,end} % all trials
filename = fullfile(PATH,FILES{kk}); % full file name
load(filename,'FlyState','AI','VidTime') % load in fly kinematics & arena voltages
vid.time = VidTime;
fly.time = FlyState{:,1};
fly.Ts = mean(diff(fly.time));
fly.Fs = 1/fly.Ts;
[b,a] = butter(2,fly.Fc/(fly.Fs/2),'low'); % 2nd-order low-pass butterworth filter
fly.head.pos = filtfilt(b,a,FlyState{:,2});
fly.wing.pos = filtfilt(b,a,filtfilt(b,a,FlyState{:,3}) - filtfilt(b,a,FlyState{:,4}));
fly.head.vel = [diff(fly.head.pos)./fly.Ts ; 0];
fly.wing.vel = [diff(fly.wing.pos)./fly.Ts ; 0];
pat.time = AI{:,1};
pat.Ts = mean(diff(pat.time));
pat.Fs = 1/pat.Ts;
pat.xpos = AI{:,2};
pat.ypos = AI{:,3};
fly.wing.pos = interp1(fly.time, fly.wing.pos , vid.time, 'nearest'); % interpolate pattern x-pos to match fly
fly.head.pos = interp1(fly.time, fly.head.pos , vid.time, 'nearest'); % interpolate pattern y-pos to match fly
fly.wing.vel = interp1(fly.time, fly.wing.vel , vid.time, 'nearest'); % interpolate pattern x-pos to match fly
fly.head.vel = interp1(fly.time, fly.head.vel , vid.time, 'nearest'); % interpolate pattern y-pos to match fly
pat.xpos = interp1(pat.time, pat.xpos , vid.time, 'nearest'); % interpolate pattern x-pos to match fly
pat.ypos = interp1(pat.time, pat.ypos , vid.time, 'nearest'); % interpolate pattern y-pos to match fly
fly.time = fly.time (span);
fly.head.pos = fly.head.pos (span);
fly.wing.pos = fly.wing.pos (span);
fly.head.vel = fly.head.vel (span);
fly.wing.vel = fly.wing.vel (span);
pat.xpos = pat.xpos (span);
pat.ypos = pat.ypos (span);
TIME {I{kk,1}}{I{kk,4},1}{I{kk,3},1}(:,end+1) = fly.time;
HEAD.Pos {I{kk,1}}{I{kk,4},1}{I{kk,3},1}(:,end+1) = fly.head.pos;
WING.Pos {I{kk,1}}{I{kk,4},1}{I{kk,3},1}(:,end+1) = fly.wing.pos;
PAT.XPos {I{kk,1}}{I{kk,4},1}{I{kk,3},1}(:,end+1) = pat.xpos ;
PAT.YPos {I{kk,1}}{I{kk,4},1}{I{kk,3},1}(:,end+1) = pat.ypos;
end
%% Plot head position %%
%---------------------------------------------------------------------------------------------------------------------------------
figure (1) ; clf ; hold on
set(gcf,'Color','w')
set(gcf,'Name','Head Position')
set(gcf,'Position',[0 0 N{1,4}*400 N{1,3}*400])
movegui(gcf,'center')
for kk = 1:N{1,1}
pp = 1;
for jj = 1:N{1,4}
for ii = 1:N{1,3}
subplot(N{1,3},N{1,4},pp) ; hold on
xlim([0 20])
ylim(20*[-1 1])
if any(pp==(1:N{1,4}))
title(['Wing Gain = ' num2str(U{1,4}{1}(jj))],'FontSize',12,'fontweight','bold')
end
if ((pp-1)/N{1,4}) == floor((pp-1)/N{1,4})
ylabel({['Head Gain = ' num2str(U{1,3}{1}(ii))],['Head Position(' char(176) ')']},...
'FontSize',13,'fontweight','bold')
else
yticks(0)
yticklabels('')
end
if any(pp==(N{1,4}*N{1,3}-N{1,4}+1):(N{1,4}*N{1,3}))
xlabel('Time (s)','FontSize',12,'fontweight','bold')
else
xticks(0)
xticklabels('')
end
time = TIME{kk}{jj}{ii};
pos = rad2deg(HEAD.Pos{kk}{jj}{ii});
plot(time,pos)
pp = pp + 1;
end
end
end
%% Plot wing position %%
%---------------------------------------------------------------------------------------------------------------------------------
figure (2) ; clf ; hold on
set(gcf,'Color','w')
set(gcf,'Name','Wing Position')
set(gcf,'Position',[0 0 N{1,4}*400 N{1,3}*400])
movegui(gcf,'center')
for kk = 1:N{1,1}
pp = 1;
for jj = 1:N{1,4}
for ii = 1:N{1,3}
subplot(N{1,3},N{1,4},pp) ; hold on
xlim([0 20])
ylim(120*[-1 1])
if any(pp==(1:N{1,4}))
title(['Wing Gain = ' num2str(U{1,4}{1}(jj))],'FontSize',12,'fontweight','bold')
end
if ((pp-1)/N{1,4}) == floor((pp-1)/N{1,4})
ylabel({['Head Gain = ' num2str(U{1,3}{1}(ii))],['Wing Position(' char(176) ')']},...
'FontSize',13,'fontweight','bold')
else
yticks(0)
yticklabels('')
end
if any(pp==(N{1,4}*N{1,3}-N{1,4}+1):(N{1,4}*N{1,3}))
xlabel('Time (s)','FontSize',12,'fontweight','bold')
else
xticks(0)
xticklabels('')
end
time = TIME{kk}{jj}{ii};
pos = rad2deg(WING.Pos{kk}{jj}{ii});
plot(time,pos)
pp = pp + 1;
end
end
end