-"""
-The typing module: Support for gradual typing as defined by PEP 484.
-
-At large scale, the structure of the module is following:
-* Imports and exports, all public names should be explicitly added to __all__.
-* Internal helper functions: these should never be used in code outside this module.
-* _SpecialForm and its instances (special forms): Any, NoReturn, ClassVar, Union, Optional
-* Two classes whose instances can be type arguments in addition to types: ForwardRef and TypeVar
-* The core of internal generics API: _GenericAlias and _VariadicGenericAlias, the latter is
- currently only used by Tuple and Callable. All subscripted types like X[int], Union[int, str],
- etc., are instances of either of these classes.
-* The public counterpart of the generics API consists of two classes: Generic and Protocol
- (the latter is currently private, but will be made public after PEP 544 acceptance).
-* Public helper functions: get_type_hints, overload, cast, no_type_check,
- no_type_check_decorator.
-* Generic aliases for collections.abc ABCs and few additional protocols.
-* Special types: NewType, NamedTuple, TypedDict (may be added soon).
-* Wrapper submodules for re and io related types.
-"""
-
-import abc
-from abc import abstractmethod, abstractproperty
-import collections
-import collections.abc
-import contextlib
-import functools
-import operator
-import re as stdlib_re # Avoid confusion with the re we export.
-import sys
-import types
-from types import WrapperDescriptorType, MethodWrapperType, MethodDescriptorType
-
-# Please keep __all__ alphabetized within each category.
-__all__ = [
- # Super-special typing primitives.
- 'Any',
- 'Callable',
- 'ClassVar',
- 'ForwardRef',
- 'Generic',
- 'Optional',
- 'Tuple',
- 'Type',
- 'TypeVar',
- 'Union',
-
- # ABCs (from collections.abc).
- 'AbstractSet', # collections.abc.Set.
- 'ByteString',
- 'Container',
- 'ContextManager',
- 'Hashable',
- 'ItemsView',
- 'Iterable',
- 'Iterator',
- 'KeysView',
- 'Mapping',
- 'MappingView',
- 'MutableMapping',
- 'MutableSequence',
- 'MutableSet',
- 'Sequence',
- 'Sized',
- 'ValuesView',
- 'Awaitable',
- 'AsyncIterator',
- 'AsyncIterable',
- 'Coroutine',
- 'Collection',
- 'AsyncGenerator',
- 'AsyncContextManager',
-
- # Structural checks, a.k.a. protocols.
- 'Reversible',
- 'SupportsAbs',
- 'SupportsBytes',
- 'SupportsComplex',
- 'SupportsFloat',
- 'SupportsInt',
- 'SupportsRound',
-
- # Concrete collection types.
- 'ChainMap',
- 'Counter',
- 'Deque',
- 'Dict',
- 'DefaultDict',
- 'List',
- 'OrderedDict',
- 'Set',
- 'FrozenSet',
- 'NamedTuple', # Not really a type.
- 'Generator',
-
- # One-off things.
- 'AnyStr',
- 'cast',
- 'get_type_hints',
- 'NewType',
- 'no_type_check',
- 'no_type_check_decorator',
- 'NoReturn',
- 'overload',
- 'Text',
- 'TYPE_CHECKING',
-]
-
-# The pseudo-submodules 're' and 'io' are part of the public
-# namespace, but excluded from __all__ because they might stomp on
-# legitimate imports of those modules.
-
-
-def _type_check(arg, msg, is_argument=True):
- """Check that the argument is a type, and return it (internal helper).
-
- As a special case, accept None and return type(None) instead. Also wrap strings
- into ForwardRef instances. Consider several corner cases, for example plain
- special forms like Union are not valid, while Union[int, str] is OK, etc.
- The msg argument is a human-readable error message, e.g::
-
- "Union[arg, ...]: arg should be a type."
-
- We append the repr() of the actual value (truncated to 100 chars).
- """
- invalid_generic_forms = (Generic, _Protocol)
- if is_argument:
- invalid_generic_forms = invalid_generic_forms + (ClassVar, )
-
- if arg is None:
- return type(None)
- if isinstance(arg, str):
- return ForwardRef(arg)
- if (isinstance(arg, _GenericAlias) and
- arg.__origin__ in invalid_generic_forms):
- raise TypeError(f"{arg} is not valid as type argument")
- if (isinstance(arg, _SpecialForm) and arg not in (Any, NoReturn) or
- arg in (Generic, _Protocol)):
- raise TypeError(f"Plain {arg} is not valid as type argument")
- if isinstance(arg, (type, TypeVar, ForwardRef)):
- return arg
- if not callable(arg):
- raise TypeError(f"{msg} Got {arg!r:.100}.")
- return arg
-
-
-def _type_repr(obj):
- """Return the repr() of an object, special-casing types (internal helper).
-
- If obj is a type, we return a shorter version than the default
- type.__repr__, based on the module and qualified name, which is
- typically enough to uniquely identify a type. For everything
- else, we fall back on repr(obj).
- """
- if isinstance(obj, type):
- if obj.__module__ == 'builtins':
- return obj.__qualname__
- return f'{obj.__module__}.{obj.__qualname__}'
- if obj is ...:
- return('...')
- if isinstance(obj, types.FunctionType):
- return obj.__name__
- return repr(obj)
-
-
-def _collect_type_vars(types):
- """Collect all type variable contained in types in order of
- first appearance (lexicographic order). For example::
-
- _collect_type_vars((T, List[S, T])) == (T, S)
- """
- tvars = []
- for t in types:
- if isinstance(t, TypeVar) and t not in tvars:
- tvars.append(t)
- if isinstance(t, _GenericAlias) and not t._special:
- tvars.extend([t for t in t.__parameters__ if t not in tvars])
- return tuple(tvars)
-
-
-def _subs_tvars(tp, tvars, subs):
- """Substitute type variables 'tvars' with substitutions 'subs'.
- These two must have the same length.
- """
- if not isinstance(tp, _GenericAlias):
- return tp
- new_args = list(tp.__args__)
- for a, arg in enumerate(tp.__args__):
- if isinstance(arg, TypeVar):
- for i, tvar in enumerate(tvars):
- if arg == tvar:
- new_args[a] = subs[i]
- else:
- new_args[a] = _subs_tvars(arg, tvars, subs)
- if tp.__origin__ is Union:
- return Union[tuple(new_args)]
- return tp.copy_with(tuple(new_args))
-
-
-def _check_generic(cls, parameters):
- """Check correct count for parameters of a generic cls (internal helper).
- This gives a nice error message in case of count mismatch.
- """
- if not cls.__parameters__:
- raise TypeError(f"{cls} is not a generic class")
- alen = len(parameters)
- elen = len(cls.__parameters__)
- if alen != elen:
- raise TypeError(f"Too {'many' if alen > elen else 'few'} parameters for {cls};"
- f" actual {alen}, expected {elen}")
-
-
-def _remove_dups_flatten(parameters):
- """An internal helper for Union creation and substitution: flatten Unions
- among parameters, then remove duplicates.
- """
- # Flatten out Union[Union[...], ...].
- params = []
- for p in parameters:
- if isinstance(p, _GenericAlias) and p.__origin__ is Union:
- params.extend(p.__args__)
- elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union:
- params.extend(p[1:])
- else:
- params.append(p)
- # Weed out strict duplicates, preserving the first of each occurrence.
- all_params = set(params)
- if len(all_params) < len(params):
- new_params = []
- for t in params:
- if t in all_params:
- new_params.append(t)
- all_params.remove(t)
- params = new_params
- assert not all_params, all_params
- return tuple(params)
-
-
-_cleanups = []
-
-
-def _tp_cache(func):
- """Internal wrapper caching __getitem__ of generic types with a fallback to
- original function for non-hashable arguments.
- """
- cached = functools.lru_cache()(func)
- _cleanups.append(cached.cache_clear)
-
- @functools.wraps(func)
- def inner(*args, **kwds):
- try:
- return cached(*args, **kwds)
- except TypeError:
- pass # All real errors (not unhashable args) are raised below.
- return func(*args, **kwds)
- return inner
-
-
-def _eval_type(t, globalns, localns):
- """Evaluate all forward reverences in the given type t.
- For use of globalns and localns see the docstring for get_type_hints().
- """
- if isinstance(t, ForwardRef):
- return t._evaluate(globalns, localns)
- if isinstance(t, _GenericAlias):
- ev_args = tuple(_eval_type(a, globalns, localns) for a in t.__args__)
- if ev_args == t.__args__:
- return t
- res = t.copy_with(ev_args)
- res._special = t._special
- return res
- return t
-
-
-class _Final:
- """Mixin to prohibit subclassing"""
-
- __slots__ = ('__weakref__',)
-
- def __init_subclass__(self, *args, **kwds):
- if '_root' not in kwds:
- raise TypeError("Cannot subclass special typing classes")
-
-class _Immutable:
- """Mixin to indicate that object should not be copied."""
-
- def __copy__(self):
- return self
-
- def __deepcopy__(self, memo):
- return self
-
-
-class _SpecialForm(_Final, _Immutable, _root=True):
- """Internal indicator of special typing constructs.
- See _doc instance attribute for specific docs.
- """
-
- __slots__ = ('_name', '_doc')
-
- def __new__(cls, *args, **kwds):
- """Constructor.
-
- This only exists to give a better error message in case
- someone tries to subclass a special typing object (not a good idea).
- """
- if (len(args) == 3 and
- isinstance(args[0], str) and
- isinstance(args[1], tuple)):
- # Close enough.
- raise TypeError(f"Cannot subclass {cls!r}")
- return super().__new__(cls)
-
- def __init__(self, name, doc):
- self._name = name
- self._doc = doc
-
- def __eq__(self, other):
- if not isinstance(other, _SpecialForm):
- return NotImplemented
- return self._name == other._name
-
- def __hash__(self):
- return hash((self._name,))
-
- def __repr__(self):
- return 'typing.' + self._name
-
- def __reduce__(self):
- return self._name
-
- def __call__(self, *args, **kwds):
- raise TypeError(f"Cannot instantiate {self!r}")
-
- def __instancecheck__(self, obj):
- raise TypeError(f"{self} cannot be used with isinstance()")
-
- def __subclasscheck__(self, cls):
- raise TypeError(f"{self} cannot be used with issubclass()")
-
- @_tp_cache
- def __getitem__(self, parameters):
- if self._name == 'ClassVar':
- item = _type_check(parameters, 'ClassVar accepts only single type.')
- return _GenericAlias(self, (item,))
- if self._name == 'Union':
- if parameters == ():
- raise TypeError("Cannot take a Union of no types.")
- if not isinstance(parameters, tuple):
- parameters = (parameters,)
- msg = "Union[arg, ...]: each arg must be a type."
- parameters = tuple(_type_check(p, msg) for p in parameters)
- parameters = _remove_dups_flatten(parameters)
- if len(parameters) == 1:
- return parameters[0]
- return _GenericAlias(self, parameters)
- if self._name == 'Optional':
- arg = _type_check(parameters, "Optional[t] requires a single type.")
- return Union[arg, type(None)]
- raise TypeError(f"{self} is not subscriptable")
-
-
-Any = _SpecialForm('Any', doc=
- """Special type indicating an unconstrained type.
-
- - Any is compatible with every type.
- - Any assumed to have all methods.
- - All values assumed to be instances of Any.
-
- Note that all the above statements are true from the point of view of
- static type checkers. At runtime, Any should not be used with instance
- or class checks.
- """)
-
-NoReturn = _SpecialForm('NoReturn', doc=
- """Special type indicating functions that never return.
- Example::
-
- from typing import NoReturn
-
- def stop() -> NoReturn:
- raise Exception('no way')
-
- This type is invalid in other positions, e.g., ``List[NoReturn]``
- will fail in static type checkers.
- """)
-
-ClassVar = _SpecialForm('ClassVar', doc=
- """Special type construct to mark class variables.
-
- An annotation wrapped in ClassVar indicates that a given
- attribute is intended to be used as a class variable and
- should not be set on instances of that class. Usage::
-
- class Starship:
- stats: ClassVar[Dict[str, int]] = {} # class variable
- damage: int = 10 # instance variable
-
- ClassVar accepts only types and cannot be further subscribed.
-
- Note that ClassVar is not a class itself, and should not
- be used with isinstance() or issubclass().
- """)
-
-Union = _SpecialForm('Union', doc=
- """Union type; Union[X, Y] means either X or Y.
-
- To define a union, use e.g. Union[int, str]. Details:
- - The arguments must be types and there must be at least one.
- - None as an argument is a special case and is replaced by
- type(None).
- - Unions of unions are flattened, e.g.::
-
- Union[Union[int, str], float] == Union[int, str, float]
-
- - Unions of a single argument vanish, e.g.::
-
- Union[int] == int # The constructor actually returns int
-
- - Redundant arguments are skipped, e.g.::
-
- Union[int, str, int] == Union[int, str]
-
- - When comparing unions, the argument order is ignored, e.g.::
-
- Union[int, str] == Union[str, int]
-
- - You cannot subclass or instantiate a union.
- - You can use Optional[X] as a shorthand for Union[X, None].
- """)
-
-Optional = _SpecialForm('Optional', doc=
- """Optional type.
-
- Optional[X] is equivalent to Union[X, None].
- """)
-
-
-class ForwardRef(_Final, _root=True):
- """Internal wrapper to hold a forward reference."""
-
- __slots__ = ('__forward_arg__', '__forward_code__',
- '__forward_evaluated__', '__forward_value__',
- '__forward_is_argument__')
-
- def __init__(self, arg, is_argument=True):
- if not isinstance(arg, str):
- raise TypeError(f"Forward reference must be a string -- got {arg!r}")
- try:
- code = compile(arg, '<string>', 'eval')
- except SyntaxError:
- raise SyntaxError(f"Forward reference must be an expression -- got {arg!r}")
- self.__forward_arg__ = arg
- self.__forward_code__ = code
- self.__forward_evaluated__ = False
- self.__forward_value__ = None
- self.__forward_is_argument__ = is_argument
-
- def _evaluate(self, globalns, localns):
- if not self.__forward_evaluated__ or localns is not globalns:
- if globalns is None and localns is None:
- globalns = localns = {}
- elif globalns is None:
- globalns = localns
- elif localns is None:
- localns = globalns
- self.__forward_value__ = _type_check(
- eval(self.__forward_code__, globalns, localns),
- "Forward references must evaluate to types.",
- is_argument=self.__forward_is_argument__)
- self.__forward_evaluated__ = True
- return self.__forward_value__
-
- def __eq__(self, other):
- if not isinstance(other, ForwardRef):
- return NotImplemented
- if self.__forward_evaluated__ and other.__forward_evaluated__:
- return (self.__forward_arg__ == other.__forward_arg__ and
- self.__forward_value__ == other.__forward_value__)
- return self.__forward_arg__ == other.__forward_arg__
-
- def __hash__(self):
- return hash(self.__forward_arg__)
-
- def __repr__(self):
- return f'ForwardRef({self.__forward_arg__!r})'
-
-
-class TypeVar(_Final, _Immutable, _root=True):
- """Type variable.
-
- Usage::
-
- T = TypeVar('T') # Can be anything
- A = TypeVar('A', str, bytes) # Must be str or bytes
-
- Type variables exist primarily for the benefit of static type
- checkers. They serve as the parameters for generic types as well
- as for generic function definitions. See class Generic for more
- information on generic types. Generic functions work as follows:
-
- def repeat(x: T, n: int) -> List[T]:
- '''Return a list containing n references to x.'''
- return [x]*n
-
- def longest(x: A, y: A) -> A:
- '''Return the longest of two strings.'''
- return x if len(x) >= len(y) else y
-
- The latter example's signature is essentially the overloading
- of (str, str) -> str and (bytes, bytes) -> bytes. Also note
- that if the arguments are instances of some subclass of str,
- the return type is still plain str.
-
- At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError.
-
- Type variables defined with covariant=True or contravariant=True
- can be used to declare covariant or contravariant generic types.
- See PEP 484 for more details. By default generic types are invariant
- in all type variables.
-
- Type variables can be introspected. e.g.:
-
- T.__name__ == 'T'
- T.__constraints__ == ()
- T.__covariant__ == False
- T.__contravariant__ = False
- A.__constraints__ == (str, bytes)
-
- Note that only type variables defined in global scope can be pickled.
- """
-
- __slots__ = ('__name__', '__bound__', '__constraints__',
- '__covariant__', '__contravariant__')
-
- def __init__(self, name, *constraints, bound=None,
- covariant=False, contravariant=False):
- self.__name__ = name
- if covariant and contravariant:
- raise ValueError("Bivariant types are not supported.")
- self.__covariant__ = bool(covariant)
- self.__contravariant__ = bool(contravariant)
- if constraints and bound is not None:
- raise TypeError("Constraints cannot be combined with bound=...")
- if constraints and len(constraints) == 1:
- raise TypeError("A single constraint is not allowed")
- msg = "TypeVar(name, constraint, ...): constraints must be types."
- self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
- if bound:
- self.__bound__ = _type_check(bound, "Bound must be a type.")
- else:
- self.__bound__ = None
- try:
- def_mod = sys._getframe(1).f_globals.get('__name__', '__main__') # for pickling
- except (AttributeError, ValueError):
- def_mod = None
- if def_mod != 'typing':
- self.__module__ = def_mod
-
- def __repr__(self):
- if self.__covariant__:
- prefix = '+'
- elif self.__contravariant__:
- prefix = '-'
- else:
- prefix = '~'
- return prefix + self.__name__
-
- def __reduce__(self):
- return self.__name__
-
-
-# Special typing constructs Union, Optional, Generic, Callable and Tuple
-# use three special attributes for internal bookkeeping of generic types:
-# * __parameters__ is a tuple of unique free type parameters of a generic
-# type, for example, Dict[T, T].__parameters__ == (T,);
-# * __origin__ keeps a reference to a type that was subscripted,
-# e.g., Union[T, int].__origin__ == Union, or the non-generic version of
-# the type.
-# * __args__ is a tuple of all arguments used in subscripting,
-# e.g., Dict[T, int].__args__ == (T, int).
-
-
-# Mapping from non-generic type names that have a generic alias in typing
-# but with a different name.
-_normalize_alias = {'list': 'List',
- 'tuple': 'Tuple',
- 'dict': 'Dict',
- 'set': 'Set',
- 'frozenset': 'FrozenSet',
- 'deque': 'Deque',
- 'defaultdict': 'DefaultDict',
- 'type': 'Type',
- 'Set': 'AbstractSet'}
-
-def _is_dunder(attr):
- return attr.startswith('__') and attr.endswith('__')
-
-
-class _GenericAlias(_Final, _root=True):
- """The central part of internal API.
-
- This represents a generic version of type 'origin' with type arguments 'params'.
- There are two kind of these aliases: user defined and special. The special ones
- are wrappers around builtin collections and ABCs in collections.abc. These must
- have 'name' always set. If 'inst' is False, then the alias can't be instantiated,
- this is used by e.g. typing.List and typing.Dict.
- """
- def __init__(self, origin, params, *, inst=True, special=False, name=None):
- self._inst = inst
- self._special = special
- if special and name is None:
- orig_name = origin.__name__
- name = _normalize_alias.get(orig_name, orig_name)
- self._name = name
- if not isinstance(params, tuple):
- params = (params,)
- self.__origin__ = origin
- self.__args__ = tuple(... if a is _TypingEllipsis else
- () if a is _TypingEmpty else
- a for a in params)
- self.__parameters__ = _collect_type_vars(params)
- self.__slots__ = None # This is not documented.
- if not name:
- self.__module__ = origin.__module__
-
- @_tp_cache
- def __getitem__(self, params):
- if self.__origin__ in (Generic, _Protocol):
- # Can't subscript Generic[...] or _Protocol[...].
- raise TypeError(f"Cannot subscript already-subscripted {self}")
- if not isinstance(params, tuple):
- params = (params,)
- msg = "Parameters to generic types must be types."
- params = tuple(_type_check(p, msg) for p in params)
- _check_generic(self, params)
- return _subs_tvars(self, self.__parameters__, params)
-
- def copy_with(self, params):
- # We don't copy self._special.
- return _GenericAlias(self.__origin__, params, name=self._name, inst=self._inst)
-
- def __repr__(self):
- if (self._name != 'Callable' or
- len(self.__args__) == 2 and self.__args__[0] is Ellipsis):
- if self._name:
- name = 'typing.' + self._name
- else:
- name = _type_repr(self.__origin__)
- if not self._special:
- args = f'[{", ".join([_type_repr(a) for a in self.__args__])}]'
- else:
- args = ''
- return (f'{name}{args}')
- if self._special:
- return 'typing.Callable'
- return (f'typing.Callable'
- f'[[{", ".join([_type_repr(a) for a in self.__args__[:-1]])}], '
- f'{_type_repr(self.__args__[-1])}]')
-
- def __eq__(self, other):
- if not isinstance(other, _GenericAlias):
- return NotImplemented
- if self.__origin__ != other.__origin__:
- return False
- if self.__origin__ is Union and other.__origin__ is Union:
- return frozenset(self.__args__) == frozenset(other.__args__)
- return self.__args__ == other.__args__
-
- def __hash__(self):
- if self.__origin__ is Union:
- return hash((Union, frozenset(self.__args__)))
- return hash((self.__origin__, self.__args__))
-
- def __call__(self, *args, **kwargs):
- if not self._inst:
- raise TypeError(f"Type {self._name} cannot be instantiated; "
- f"use {self._name.lower()}() instead")
- result = self.__origin__(*args, **kwargs)
- try:
- result.__orig_class__ = self
- except AttributeError:
- pass
- return result
-
- def __mro_entries__(self, bases):
- if self._name: # generic version of an ABC or built-in class
- res = []
- if self.__origin__ not in bases:
- res.append(self.__origin__)
- i = bases.index(self)
- if not any(isinstance(b, _GenericAlias) or issubclass(b, Generic)
- for b in bases[i+1:]):
- res.append(Generic)
- return tuple(res)
- if self.__origin__ is Generic:
- i = bases.index(self)
- for b in bases[i+1:]:
- if isinstance(b, _GenericAlias) and b is not self:
- return ()
- return (self.__origin__,)
-
- def __getattr__(self, attr):
- # We are careful for copy and pickle.
- # Also for simplicity we just don't relay all dunder names
- if '__origin__' in self.__dict__ and not _is_dunder(attr):
- return getattr(self.__origin__, attr)
- raise AttributeError(attr)
-
- def __setattr__(self, attr, val):
- if _is_dunder(attr) or attr in ('_name', '_inst', '_special'):
- super().__setattr__(attr, val)
- else:
- setattr(self.__origin__, attr, val)
-
- def __instancecheck__(self, obj):
- return self.__subclasscheck__(type(obj))
-
- def __subclasscheck__(self, cls):
- if self._special:
- if not isinstance(cls, _GenericAlias):
- return issubclass(cls, self.__origin__)
- if cls._special:
- return issubclass(cls.__origin__, self.__origin__)
- raise TypeError("Subscripted generics cannot be used with"
- " class and instance checks")
-
- def __reduce__(self):
- if self._special:
- return self._name
-
- if self._name:
- origin = globals()[self._name]
- else:
- origin = self.__origin__
- if (origin is Callable and
- not (len(self.__args__) == 2 and self.__args__[0] is Ellipsis)):
- args = list(self.__args__[:-1]), self.__args__[-1]
- else:
- args = tuple(self.__args__)
- if len(args) == 1 and not isinstance(args[0], tuple):
- args, = args
- return operator.getitem, (origin, args)
-
-
-class _VariadicGenericAlias(_GenericAlias, _root=True):
- """Same as _GenericAlias above but for variadic aliases. Currently,
- this is used only by special internal aliases: Tuple and Callable.
- """
- def __getitem__(self, params):
- if self._name != 'Callable' or not self._special:
- return self.__getitem_inner__(params)
- if not isinstance(params, tuple) or len(params) != 2:
- raise TypeError("Callable must be used as "
- "Callable[[arg, ...], result].")
- args, result = params
- if args is Ellipsis:
- params = (Ellipsis, result)
- else:
- if not isinstance(args, list):
- raise TypeError(f"Callable[args, result]: args must be a list."
- f" Got {args}")
- params = (tuple(args), result)
- return self.__getitem_inner__(params)
-
- @_tp_cache
- def __getitem_inner__(self, params):
- if self.__origin__ is tuple and self._special:
- if params == ():
- return self.copy_with((_TypingEmpty,))
- if not isinstance(params, tuple):
- params = (params,)
- if len(params) == 2 and params[1] is ...:
- msg = "Tuple[t, ...]: t must be a type."
- p = _type_check(params[0], msg)
- return self.copy_with((p, _TypingEllipsis))
- msg = "Tuple[t0, t1, ...]: each t must be a type."
- params = tuple(_type_check(p, msg) for p in params)
- return self.copy_with(params)
- if self.__origin__ is collections.abc.Callable and self._special:
- args, result = params
- msg = "Callable[args, result]: result must be a type."
- result = _type_check(result, msg)
- if args is Ellipsis:
- return self.copy_with((_TypingEllipsis, result))
- msg = "Callable[[arg, ...], result]: each arg must be a type."
- args = tuple(_type_check(arg, msg) for arg in args)
- params = args + (result,)
- return self.copy_with(params)
- return super().__getitem__(params)
-
-
-class Generic:
- """Abstract base class for generic types.
-
- A generic type is typically declared by inheriting from
- this class parameterized with one or more type variables.
- For example, a generic mapping type might be defined as::
-
- class Mapping(Generic[KT, VT]):
- def __getitem__(self, key: KT) -> VT:
- ...
- # Etc.
-
- This class can then be used as follows::
-
- def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT:
- try:
- return mapping[key]
- except KeyError:
- return default
- """
- __slots__ = ()
-
- def __new__(cls, *args, **kwds):
- if cls is Generic:
- raise TypeError("Type Generic cannot be instantiated; "
- "it can be used only as a base class")
- if super().__new__ is object.__new__ and cls.__init__ is not object.__init__:
- obj = super().__new__(cls)
- else:
- obj = super().__new__(cls, *args, **kwds)
- return obj
-
- @_tp_cache
- def __class_getitem__(cls, params):
- if not isinstance(params, tuple):
- params = (params,)
- if not params and cls is not Tuple:
- raise TypeError(
- f"Parameter list to {cls.__qualname__}[...] cannot be empty")
- msg = "Parameters to generic types must be types."
- params = tuple(_type_check(p, msg) for p in params)
- if cls is Generic:
- # Generic can only be subscripted with unique type variables.
- if not all(isinstance(p, TypeVar) for p in params):
- raise TypeError(
- "Parameters to Generic[...] must all be type variables")
- if len(set(params)) != len(params):
- raise TypeError(
- "Parameters to Generic[...] must all be unique")
- elif cls is _Protocol:
- # _Protocol is internal at the moment, just skip the check
- pass
- else:
- # Subscripting a regular Generic subclass.
- _check_generic(cls, params)
- return _GenericAlias(cls, params)
-
- def __init_subclass__(cls, *args, **kwargs):
- super().__init_subclass__(*args, **kwargs)
- tvars = []
- if '__orig_bases__' in cls.__dict__:
- error = Generic in cls.__orig_bases__
- else:
- error = Generic in cls.__bases__ and cls.__name__ != '_Protocol'
- if error:
- raise TypeError("Cannot inherit from plain Generic")
- if '__orig_bases__' in cls.__dict__:
- tvars = _collect_type_vars(cls.__orig_bases__)
- # Look for Generic[T1, ..., Tn].
- # If found, tvars must be a subset of it.
- # If not found, tvars is it.
- # Also check for and reject plain Generic,
- # and reject multiple Generic[...].
- gvars = None
- for base in cls.__orig_bases__:
- if (isinstance(base, _GenericAlias) and
- base.__origin__ is Generic):
- if gvars is not None:
- raise TypeError(
- "Cannot inherit from Generic[...] multiple types.")
- gvars = base.__parameters__
- if gvars is None:
- gvars = tvars
- else:
- tvarset = set(tvars)
- gvarset = set(gvars)
- if not tvarset <= gvarset:
- s_vars = ', '.join(str(t) for t in tvars if t not in gvarset)
- s_args = ', '.join(str(g) for g in gvars)
- raise TypeError(f"Some type variables ({s_vars}) are"
- f" not listed in Generic[{s_args}]")
- tvars = gvars
- cls.__parameters__ = tuple(tvars)
-
-
-class _TypingEmpty:
- """Internal placeholder for () or []. Used by TupleMeta and CallableMeta
- to allow empty list/tuple in specific places, without allowing them
- to sneak in where prohibited.
- """
-
-
-class _TypingEllipsis:
- """Internal placeholder for ... (ellipsis)."""
-
-
-def cast(typ, val):
- """Cast a value to a type.
-
- This returns the value unchanged. To the type checker this
- signals that the return value has the designated type, but at
- runtime we intentionally don't check anything (we want this
- to be as fast as possible).
- """
- return val
-
-
-def _get_defaults(func):
- """Internal helper to extract the default arguments, by name."""
- try:
- code = func.__code__
- except AttributeError:
- # Some built-in functions don't have __code__, __defaults__, etc.
- return {}
- pos_count = code.co_argcount
- arg_names = code.co_varnames
- arg_names = arg_names[:pos_count]
- defaults = func.__defaults__ or ()
- kwdefaults = func.__kwdefaults__
- res = dict(kwdefaults) if kwdefaults else {}
- pos_offset = pos_count - len(defaults)
- for name, value in zip(arg_names[pos_offset:], defaults):
- assert name not in res
- res[name] = value
- return res
-
-
-_allowed_types = (types.FunctionType, types.BuiltinFunctionType,
- types.MethodType, types.ModuleType,
- WrapperDescriptorType, MethodWrapperType, MethodDescriptorType)
-
-
-def get_type_hints(obj, globalns=None, localns=None):
- """Return type hints for an object.
-
- This is often the same as obj.__annotations__, but it handles
- forward references encoded as string literals, and if necessary
- adds Optional[t] if a default value equal to None is set.
-
- The argument may be a module, class, method, or function. The annotations
- are returned as a dictionary. For classes, annotations include also
- inherited members.
-
- TypeError is raised if the argument is not of a type that can contain
- annotations, and an empty dictionary is returned if no annotations are
- present.
-
- BEWARE -- the behavior of globalns and localns is counterintuitive
- (unless you are familiar with how eval() and exec() work). The
- search order is locals first, then globals.
-
- - If no dict arguments are passed, an attempt is made to use the
- globals from obj (or the respective module's globals for classes),
- and these are also used as the locals. If the object does not appear
- to have globals, an empty dictionary is used.
-
- - If one dict argument is passed, it is used for both globals and
- locals.
-
- - If two dict arguments are passed, they specify globals and
- locals, respectively.
- """
-
- if getattr(obj, '__no_type_check__', None):
- return {}
- # Classes require a special treatment.
- if isinstance(obj, type):
- hints = {}
- for base in reversed(obj.__mro__):
- if globalns is None:
- base_globals = sys.modules[base.__module__].__dict__
- else:
- base_globals = globalns
- ann = base.__dict__.get('__annotations__', {})
- for name, value in ann.items():
- if value is None:
- value = type(None)
- if isinstance(value, str):
- value = ForwardRef(value, is_argument=False)
- value = _eval_type(value, base_globals, localns)
- hints[name] = value
- return hints
-
- if globalns is None:
- if isinstance(obj, types.ModuleType):
- globalns = obj.__dict__
- else:
- nsobj = obj
- # Find globalns for the unwrapped object.
- while hasattr(nsobj, '__wrapped__'):
- nsobj = nsobj.__wrapped__
- globalns = getattr(nsobj, '__globals__', {})
- if localns is None:
- localns = globalns
- elif localns is None:
- localns = globalns
- hints = getattr(obj, '__annotations__', None)
- if hints is None:
- # Return empty annotations for something that _could_ have them.
- if isinstance(obj, _allowed_types):
- return {}
- else:
- raise TypeError('{!r} is not a module, class, method, '
- 'or function.'.format(obj))
- defaults = _get_defaults(obj)
- hints = dict(hints)
- for name, value in hints.items():
- if value is None:
- value = type(None)
- if isinstance(value, str):
- value = ForwardRef(value)
- value = _eval_type(value, globalns, localns)
- if name in defaults and defaults[name] is None:
- value = Optional[value]
- hints[name] = value
- return hints
-
-
-def no_type_check(arg):
- """Decorator to indicate that annotations are not type hints.
-
- The argument must be a class or function; if it is a class, it
- applies recursively to all methods and classes defined in that class
- (but not to methods defined in its superclasses or subclasses).
-
- This mutates the function(s) or class(es) in place.
- """
- if isinstance(arg, type):
- arg_attrs = arg.__dict__.copy()
- for attr, val in arg.__dict__.items():
- if val in arg.__bases__ + (arg,):
- arg_attrs.pop(attr)
- for obj in arg_attrs.values():
- if isinstance(obj, types.FunctionType):
- obj.__no_type_check__ = True
- if isinstance(obj, type):
- no_type_check(obj)
- try:
- arg.__no_type_check__ = True
- except TypeError: # built-in classes
- pass
- return arg
-
-
-def no_type_check_decorator(decorator):
- """Decorator to give another decorator the @no_type_check effect.
-
- This wraps the decorator with something that wraps the decorated
- function in @no_type_check.
- """
-
- @functools.wraps(decorator)
- def wrapped_decorator(*args, **kwds):
- func = decorator(*args, **kwds)
- func = no_type_check(func)
- return func
-
- return wrapped_decorator
-
-
-def _overload_dummy(*args, **kwds):
- """Helper for @overload to raise when called."""
- raise NotImplementedError(
- "You should not call an overloaded function. "
- "A series of @overload-decorated functions "
- "outside a stub module should always be followed "
- "by an implementation that is not @overload-ed.")
-
-
-def overload(func):
- """Decorator for overloaded functions/methods.
-
- In a stub file, place two or more stub definitions for the same
- function in a row, each decorated with @overload. For example:
-
- @overload
- def utf8(value: None) -> None: ...
- @overload
- def utf8(value: bytes) -> bytes: ...
- @overload
- def utf8(value: str) -> bytes: ...
-
- In a non-stub file (i.e. a regular .py file), do the same but
- follow it with an implementation. The implementation should *not*
- be decorated with @overload. For example:
-
- @overload
- def utf8(value: None) -> None: ...
- @overload
- def utf8(value: bytes) -> bytes: ...
- @overload
- def utf8(value: str) -> bytes: ...
- def utf8(value):
- # implementation goes here
- """
- return _overload_dummy
-
-
-class _ProtocolMeta(type):
- """Internal metaclass for _Protocol.
-
- This exists so _Protocol classes can be generic without deriving
- from Generic.
- """
-
- def __instancecheck__(self, obj):
- if _Protocol not in self.__bases__:
- return super().__instancecheck__(obj)
- raise TypeError("Protocols cannot be used with isinstance().")
-
- def __subclasscheck__(self, cls):
- if not self._is_protocol:
- # No structural checks since this isn't a protocol.
- return NotImplemented
-
- if self is _Protocol:
- # Every class is a subclass of the empty protocol.
- return True
-
- # Find all attributes defined in the protocol.
- attrs = self._get_protocol_attrs()
-
- for attr in attrs:
- if not any(attr in d.__dict__ for d in cls.__mro__):
- return False
- return True
-
- def _get_protocol_attrs(self):
- # Get all Protocol base classes.
- protocol_bases = []
- for c in self.__mro__:
- if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol':
- protocol_bases.append(c)
-
- # Get attributes included in protocol.
- attrs = set()
- for base in protocol_bases:
- for attr in base.__dict__.keys():
- # Include attributes not defined in any non-protocol bases.
- for c in self.__mro__:
- if (c is not base and attr in c.__dict__ and
- not getattr(c, '_is_protocol', False)):
- break
- else:
- if (not attr.startswith('_abc_') and
- attr != '__abstractmethods__' and
- attr != '__annotations__' and
- attr != '__weakref__' and
- attr != '_is_protocol' and
- attr != '_gorg' and
- attr != '__dict__' and
- attr != '__args__' and
- attr != '__slots__' and
- attr != '_get_protocol_attrs' and
- attr != '__next_in_mro__' and
- attr != '__parameters__' and
- attr != '__origin__' and
- attr != '__orig_bases__' and
- attr != '__extra__' and
- attr != '__tree_hash__' and
- attr != '__module__'):
- attrs.add(attr)
-
- return attrs
-
-
-class _Protocol(Generic, metaclass=_ProtocolMeta):
- """Internal base class for protocol classes.
-
- This implements a simple-minded structural issubclass check
- (similar but more general than the one-offs in collections.abc
- such as Hashable).
- """
-
- __slots__ = ()
-
- _is_protocol = True
-
- def __class_getitem__(cls, params):
- return super().__class_getitem__(params)
-
-
-# Some unconstrained type variables. These are used by the container types.
-# (These are not for export.)
-T = TypeVar('T') # Any type.
-KT = TypeVar('KT') # Key type.
-VT = TypeVar('VT') # Value type.
-T_co = TypeVar('T_co', covariant=True) # Any type covariant containers.
-V_co = TypeVar('V_co', covariant=True) # Any type covariant containers.
-VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers.
-T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant.
-# Internal type variable used for Type[].
-CT_co = TypeVar('CT_co', covariant=True, bound=type)
-
-# A useful type variable with constraints. This represents string types.
-# (This one *is* for export!)
-AnyStr = TypeVar('AnyStr', bytes, str)
-
-
-# Various ABCs mimicking those in collections.abc.
-def _alias(origin, params, inst=True):
- return _GenericAlias(origin, params, special=True, inst=inst)
-
-Hashable = _alias(collections.abc.Hashable, ()) # Not generic.
-Awaitable = _alias(collections.abc.Awaitable, T_co)
-Coroutine = _alias(collections.abc.Coroutine, (T_co, T_contra, V_co))
-AsyncIterable = _alias(collections.abc.AsyncIterable, T_co)
-AsyncIterator = _alias(collections.abc.AsyncIterator, T_co)
-Iterable = _alias(collections.abc.Iterable, T_co)
-Iterator = _alias(collections.abc.Iterator, T_co)
-Reversible = _alias(collections.abc.Reversible, T_co)
-Sized = _alias(collections.abc.Sized, ()) # Not generic.
-Container = _alias(collections.abc.Container, T_co)
-Collection = _alias(collections.abc.Collection, T_co)
-Callable = _VariadicGenericAlias(collections.abc.Callable, (), special=True)
-Callable.__doc__ = \
- """Callable type; Callable[[int], str] is a function of (int) -> str.
-
- The subscription syntax must always be used with exactly two
- values: the argument list and the return type. The argument list
- must be a list of types or ellipsis; the return type must be a single type.
-
- There is no syntax to indicate optional or keyword arguments,
- such function types are rarely used as callback types.
- """
-AbstractSet = _alias(collections.abc.Set, T_co)
-MutableSet = _alias(collections.abc.MutableSet, T)
-# NOTE: Mapping is only covariant in the value type.
-Mapping = _alias(collections.abc.Mapping, (KT, VT_co))
-MutableMapping = _alias(collections.abc.MutableMapping, (KT, VT))
-Sequence = _alias(collections.abc.Sequence, T_co)
-MutableSequence = _alias(collections.abc.MutableSequence, T)
-ByteString = _alias(collections.abc.ByteString, ()) # Not generic
-Tuple = _VariadicGenericAlias(tuple, (), inst=False, special=True)
-Tuple.__doc__ = \
- """Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
-
- Example: Tuple[T1, T2] is a tuple of two elements corresponding
- to type variables T1 and T2. Tuple[int, float, str] is a tuple
- of an int, a float and a string.
-
- To specify a variable-length tuple of homogeneous type, use Tuple[T, ...].
- """
-List = _alias(list, T, inst=False)
-Deque = _alias(collections.deque, T)
-Set = _alias(set, T, inst=False)
-FrozenSet = _alias(frozenset, T_co, inst=False)
-MappingView = _alias(collections.abc.MappingView, T_co)
-KeysView = _alias(collections.abc.KeysView, KT)
-ItemsView = _alias(collections.abc.ItemsView, (KT, VT_co))
-ValuesView = _alias(collections.abc.ValuesView, VT_co)
-ContextManager = _alias(contextlib.AbstractContextManager, T_co)
-AsyncContextManager = _alias(contextlib.AbstractAsyncContextManager, T_co)
-Dict = _alias(dict, (KT, VT), inst=False)
-DefaultDict = _alias(collections.defaultdict, (KT, VT))
-OrderedDict = _alias(collections.OrderedDict, (KT, VT))
-Counter = _alias(collections.Counter, T)
-ChainMap = _alias(collections.ChainMap, (KT, VT))
-Generator = _alias(collections.abc.Generator, (T_co, T_contra, V_co))
-AsyncGenerator = _alias(collections.abc.AsyncGenerator, (T_co, T_contra))
-Type = _alias(type, CT_co, inst=False)
-Type.__doc__ = \
- """A special construct usable to annotate class objects.
-
- For example, suppose we have the following classes::
-
- class User: ... # Abstract base for User classes
- class BasicUser(User): ...
- class ProUser(User): ...
- class TeamUser(User): ...
-
- And a function that takes a class argument that's a subclass of
- User and returns an instance of the corresponding class::
-
- U = TypeVar('U', bound=User)
- def new_user(user_class: Type[U]) -> U:
- user = user_class()
- # (Here we could write the user object to a database)
- return user
-
- joe = new_user(BasicUser)
-
- At this point the type checker knows that joe has type BasicUser.
- """
-
-
-class SupportsInt(_Protocol):
- """An ABC with one abstract method __int__."""
- __slots__ = ()
-
- @abstractmethod
- def __int__(self) -> int:
- pass
-
-
-class SupportsFloat(_Protocol):
- """An ABC with one abstract method __float__."""
- __slots__ = ()
-
- @abstractmethod
- def __float__(self) -> float:
- pass
-
-
-class SupportsComplex(_Protocol):
- """An ABC with one abstract method __complex__."""
- __slots__ = ()
-
- @abstractmethod
- def __complex__(self) -> complex:
- pass
-
-
-class SupportsBytes(_Protocol):
- """An ABC with one abstract method __bytes__."""
- __slots__ = ()
-
- @abstractmethod
- def __bytes__(self) -> bytes:
- pass
-
-
-class SupportsAbs(_Protocol[T_co]):
- """An ABC with one abstract method __abs__ that is covariant in its return type."""
- __slots__ = ()
-
- @abstractmethod
- def __abs__(self) -> T_co:
- pass
-
-
-class SupportsRound(_Protocol[T_co]):
- """An ABC with one abstract method __round__ that is covariant in its return type."""
- __slots__ = ()
-
- @abstractmethod
- def __round__(self, ndigits: int = 0) -> T_co:
- pass
-
-
-def _make_nmtuple(name, types):
- msg = "NamedTuple('Name', [(f0, t0), (f1, t1), ...]); each t must be a type"
- types = [(n, _type_check(t, msg)) for n, t in types]
- nm_tpl = collections.namedtuple(name, [n for n, t in types])
- # Prior to PEP 526, only _field_types attribute was assigned.
- # Now, both __annotations__ and _field_types are used to maintain compatibility.
- nm_tpl.__annotations__ = nm_tpl._field_types = collections.OrderedDict(types)
- try:
- nm_tpl.__module__ = sys._getframe(2).f_globals.get('__name__', '__main__')
- except (AttributeError, ValueError):
- pass
- return nm_tpl
-
-
-# attributes prohibited to set in NamedTuple class syntax
-_prohibited = ('__new__', '__init__', '__slots__', '__getnewargs__',
- '_fields', '_field_defaults', '_field_types',
- '_make', '_replace', '_asdict', '_source')
-
-_special = ('__module__', '__name__', '__annotations__')
-
-
-class NamedTupleMeta(type):
-
- def __new__(cls, typename, bases, ns):
- if ns.get('_root', False):
- return super().__new__(cls, typename, bases, ns)
- types = ns.get('__annotations__', {})
- nm_tpl = _make_nmtuple(typename, types.items())
- defaults = []
- defaults_dict = {}
- for field_name in types:
- if field_name in ns:
- default_value = ns[field_name]
- defaults.append(default_value)
- defaults_dict[field_name] = default_value
- elif defaults:
- raise TypeError("Non-default namedtuple field {field_name} cannot "
- "follow default field(s) {default_names}"
- .format(field_name=field_name,
- default_names=', '.join(defaults_dict.keys())))
- nm_tpl.__new__.__annotations__ = collections.OrderedDict(types)
- nm_tpl.__new__.__defaults__ = tuple(defaults)
- nm_tpl._field_defaults = defaults_dict
- # update from user namespace without overriding special namedtuple attributes
- for key in ns:
- if key in _prohibited:
- raise AttributeError("Cannot overwrite NamedTuple attribute " + key)
- elif key not in _special and key not in nm_tpl._fields:
- setattr(nm_tpl, key, ns[key])
- return nm_tpl
-
-
-class NamedTuple(metaclass=NamedTupleMeta):
- """Typed version of namedtuple.
-
- Usage in Python versions >= 3.6::
-
- class Employee(NamedTuple):
- name: str
- id: int
-
- This is equivalent to::
-
- Employee = collections.namedtuple('Employee', ['name', 'id'])
-
- The resulting class has extra __annotations__ and _field_types
- attributes, giving an ordered dict mapping field names to types.
- __annotations__ should be preferred, while _field_types
- is kept to maintain pre PEP 526 compatibility. (The field names
- are in the _fields attribute, which is part of the namedtuple
- API.) Alternative equivalent keyword syntax is also accepted::
-
- Employee = NamedTuple('Employee', name=str, id=int)
-
- In Python versions <= 3.5 use::
-
- Employee = NamedTuple('Employee', [('name', str), ('id', int)])
- """
- _root = True
-
- def __new__(*args, **kwargs):
- if not args:
- raise TypeError('NamedTuple.__new__(): not enough arguments')
- cls, *args = args # allow the "cls" keyword be passed
- if args:
- typename, *args = args # allow the "typename" keyword be passed
- elif 'typename' in kwargs:
- typename = kwargs.pop('typename')
- else:
- raise TypeError("NamedTuple.__new__() missing 1 required positional "
- "argument: 'typename'")
- if args:
- try:
- fields, = args # allow the "fields" keyword be passed
- except ValueError:
- raise TypeError(f'NamedTuple.__new__() takes from 2 to 3 '
- f'positional arguments but {len(args) + 2} '
- f'were given') from None
- elif 'fields' in kwargs and len(kwargs) == 1:
- fields = kwargs.pop('fields')
- else:
- fields = None
-
- if fields is None:
- fields = kwargs.items()
- elif kwargs:
- raise TypeError("Either list of fields or keywords"
- " can be provided to NamedTuple, not both")
- return _make_nmtuple(typename, fields)
- __new__.__text_signature__ = '($cls, typename, fields=None, /, **kwargs)'
-
-
-def NewType(name, tp):
- """NewType creates simple unique types with almost zero
- runtime overhead. NewType(name, tp) is considered a subtype of tp
- by static type checkers. At runtime, NewType(name, tp) returns
- a dummy function that simply returns its argument. Usage::
-
- UserId = NewType('UserId', int)
-
- def name_by_id(user_id: UserId) -> str:
- ...
-
- UserId('user') # Fails type check
-
- name_by_id(42) # Fails type check
- name_by_id(UserId(42)) # OK
-
- num = UserId(5) + 1 # type: int
- """
-
- def new_type(x):
- return x
-
- new_type.__name__ = name
- new_type.__supertype__ = tp
- return new_type
-
-
-# Python-version-specific alias (Python 2: unicode; Python 3: str)
-Text = str
-
-
-# Constant that's True when type checking, but False here.
-TYPE_CHECKING = False
-
-
-class IO(Generic[AnyStr]):
- """Generic base class for TextIO and BinaryIO.
-
- This is an abstract, generic version of the return of open().
-
- NOTE: This does not distinguish between the different possible
- classes (text vs. binary, read vs. write vs. read/write,
- append-only, unbuffered). The TextIO and BinaryIO subclasses
- below capture the distinctions between text vs. binary, which is
- pervasive in the interface; however we currently do not offer a
- way to track the other distinctions in the type system.
- """
-
- __slots__ = ()
-
- @abstractproperty
- def mode(self) -> str:
- pass
-
- @abstractproperty
- def name(self) -> str:
- pass
-
- @abstractmethod
- def close(self) -> None:
- pass
-
- @abstractproperty
- def closed(self) -> bool:
- pass
-
- @abstractmethod
- def fileno(self) -> int:
- pass
-
- @abstractmethod
- def flush(self) -> None:
- pass
-
- @abstractmethod
- def isatty(self) -> bool:
- pass
-
- @abstractmethod
- def read(self, n: int = -1) -> AnyStr:
- pass
-
- @abstractmethod
- def readable(self) -> bool:
- pass
-
- @abstractmethod
- def readline(self, limit: int = -1) -> AnyStr:
- pass
-
- @abstractmethod
- def readlines(self, hint: int = -1) -> List[AnyStr]:
- pass
-
- @abstractmethod
- def seek(self, offset: int, whence: int = 0) -> int:
- pass
-
- @abstractmethod
- def seekable(self) -> bool:
- pass
-
- @abstractmethod
- def tell(self) -> int:
- pass
-
- @abstractmethod
- def truncate(self, size: int = None) -> int:
- pass
-
- @abstractmethod
- def writable(self) -> bool:
- pass
-
- @abstractmethod
- def write(self, s: AnyStr) -> int:
- pass
-
- @abstractmethod
- def writelines(self, lines: List[AnyStr]) -> None:
- pass
-
- @abstractmethod
- def __enter__(self) -> 'IO[AnyStr]':
- pass
-
- @abstractmethod
- def __exit__(self, type, value, traceback) -> None:
- pass
-
-
-class BinaryIO(IO[bytes]):
- """Typed version of the return of open() in binary mode."""
-
- __slots__ = ()
-
- @abstractmethod
- def write(self, s: Union[bytes, bytearray]) -> int:
- pass
-
- @abstractmethod
- def __enter__(self) -> 'BinaryIO':
- pass
-
-
-class TextIO(IO[str]):
- """Typed version of the return of open() in text mode."""
-
- __slots__ = ()
-
- @abstractproperty
- def buffer(self) -> BinaryIO:
- pass
-
- @abstractproperty
- def encoding(self) -> str:
- pass
-
- @abstractproperty
- def errors(self) -> Optional[str]:
- pass
-
- @abstractproperty
- def line_buffering(self) -> bool:
- pass
-
- @abstractproperty
- def newlines(self) -> Any:
- pass
-
- @abstractmethod
- def __enter__(self) -> 'TextIO':
- pass
-
-
-class io:
- """Wrapper namespace for IO generic classes."""
-
- __all__ = ['IO', 'TextIO', 'BinaryIO']
- IO = IO
- TextIO = TextIO
- BinaryIO = BinaryIO
-
-
-io.__name__ = __name__ + '.io'
-sys.modules[io.__name__] = io
-
-Pattern = _alias(stdlib_re.Pattern, AnyStr)
-Match = _alias(stdlib_re.Match, AnyStr)
-
-class re:
- """Wrapper namespace for re type aliases."""
-
- __all__ = ['Pattern', 'Match']
- Pattern = Pattern
- Match = Match
-
-
-re.__name__ = __name__ + '.re'
-sys.modules[re.__name__] = re
-