-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathctracker.c
229 lines (212 loc) · 7.17 KB
/
ctracker.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/* $Id$
*
* (C) 2003-2007, Friedrich Woeger <woeger@kis.uni-freiburg.de>,
* Kiepenheuer-Institut für Sonnenphysik, Freiburg (Breisgau), Germany
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of the Kiepenheuer-Institut nor the
* names of its contributors may be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/* =====================================================================
**
** Supplementary speckle math routines
**
** =====================================================================
**
** uses fftw3 library (http://www.fftw.org)
** Library for fast fourier transform
**
** =====================================================================
**
** Author: F. Woeger
** Kiepenheuer-Institut fuer Sonnenphysik
** Freiburg, Germany
**
** Written 17. 06. 2003
**
** =====================================================================
*/
#include "speckle_math.h"
void ctracker(float *ref, float *in, int nx, int ny, int nfr, float *out)
{
/*
* Declaration of local variables
*/
static int nxh = 0, nyh = 0; /* coordinates of origin */
static float *win = NULL; /* apodisation window */
static float *fit = NULL; /* fitted surface */
static double *temp1 = NULL; /* temporary data storage space */
static double *temp2 = NULL; /* temporary data storage space */
static double *ccr = NULL; /* cross correlation */
static fftw_complex *fref = NULL; /* FFT of reference img */
static fftw_complex *fimage = NULL; /* FFT of image */
static fftw_complex *fccr = NULL; /* FFT of cross cor */
long k, l; /* helper variables */
long i; /* index counter variable */
long N; /* total number of pixels in subfield */
double maxval; /* value of max of cross correlation */
long maxpos = 0; /* vector position of maximum */
int mx, my; /* x and y position of max */
double mval; /* mean intensity value */
fftw_plan fftref; /* planning to FFT mean */
fftw_plan fftimage; /* planning to FFT image */
fftw_plan crosscor; /* planning to FFT cross cor */
/*
* Initialize local variables
*/
N = nx * ny;
if ((nxh == 0) || (nyh == 0)) {
// Allocate memory
nxh = nx / 2;
nyh = ny / 2;
win = (float *) malloc(N * sizeof(float));
fit = (float *) malloc(N * sizeof(float));
temp1 = (double *) malloc(N * sizeof(double));
temp2 = (double *) malloc(N * sizeof(double));
ccr = (double *) malloc(N * sizeof(double));
fref = fftw_malloc(nx * (nyh + 1) * sizeof(fftw_complex));
fimage = fftw_malloc(nx * (nyh + 1) * sizeof(fftw_complex));
fccr = fftw_malloc(nx * (nyh + 1) * sizeof(fftw_complex));
hanming(win, nx, ny, 0.5);
}
else if ((nxh != nx / 2) || (nyh != ny / 2)) {
// Clear all used memory
free(win);
free(fit);
free(temp1);
free(temp2);
free(ccr);
fftw_free(fref);
fftw_free(fimage);
fftw_free(fccr);
// Allocate memory
nxh = nx / 2;
nyh = ny / 2;
win = (float *) malloc(N * sizeof(float));
hanming(win, nx, ny, 0.5);
fit = (float *) malloc(N * sizeof(float));
temp1 = (double *) malloc(N * sizeof(double));
temp2 = (double *) malloc(N * sizeof(double));
ccr = (double *) malloc(N * sizeof(double));
fref = fftw_malloc(nx * (nyh + 1) * sizeof(fftw_complex));
fimage = fftw_malloc(nx * (nyh + 1) * sizeof(fftw_complex));
fccr = fftw_malloc(nx * (nyh + 1) * sizeof(fftw_complex));
}
memset(temp1, 0.0, N * sizeof(double));
memset(temp2, 0.0, N * sizeof(double));
memset(ccr, 0.0, N * sizeof(double));
memset(fref, 0.0, nx * (nyh + 1) * sizeof(fftw_complex));
memset(fimage, 0.0, nx * (nyh + 1) * sizeof(fftw_complex));
memset(fccr, 0.0, nx * (nyh + 1) * sizeof(fftw_complex));
fftref = fftw_plan_dft_r2c_2d(nx, ny, temp1, fref, FFTW_ESTIMATE);
fftimage = fftw_plan_dft_r2c_2d(nx, ny, temp2, fimage, FFTW_ESTIMATE);
crosscor = fftw_plan_dft_c2r_2d(nx, ny, fccr, ccr, FFTW_ESTIMATE);
/*
* Set reference frame if present. If not present, then set first image
* as reference. Reference is stored in temp1. Then calculate FFT(Reference, -1)
*/
if (ref != NULL) {
surfit(ref, nx, ny, 2, fit);
stats(fit, N, 0.0, &mval, NULL);
for (i = 0; i < N; i++) {
temp1[i] = (double) (win[i] * (ref[i] - fit[i])) + mval;
}
}
else {
surfit(in, nx, ny, 2, fit);
stats(fit, N, 0.0, &mval, NULL);
for (i = 0; i < N; i++) {
temp1[i] = (double) (win[i] * (in[i] - fit[i])) + mval;
}
}
fftw_execute(fftref);
/*
* Loop through burst
*/
for (l = 0; l < nfr; l++) {
/* index variable for image frame */
k = l * N;
/*
* Initialize Images. Surface fit image. Store resultant image in dtemp2.
*
* Surface fit
*/
surfit(&in[k], nx, ny, 2, fit);
stats(fit, N, 0.0, &mval, NULL);
/* Counter variable for image frame */
for (i = 0; i < N; i++) {
temp2[i] = (double) (win[i] * (in[i + k] - fit[i])) + mval;
}
/*
* Do FFT(Image,-1)
*/
fftw_execute(fftimage);
/*
* Calculation of FFT(Image,-1)*Conj(FFT(Reference,-1))
*/
for (i = 0; i < nx * (nyh + 1); i++) {
fccr[i][0] = fimage[i][0] * fref[i][0]
+ fimage[i][1] * fref[i][1];
fccr[i][1] = fimage[i][1] * fref[i][0]
- fimage[i][0] * fref[i][1];
}
/*
* Calculation of FFT(FFT(Image,-1)*Conj(FFT(Reference,-1)),+1)
*/
fftw_execute(crosscor);
/*
* Find maximum
*/
maxval = ccr[0];
for (i = 0; i < N; i++) {
if (ccr[i] > maxval) {
maxpos = i;
maxval = ccr[i];
}
}
/*
* Convert information about max into relevant values
* Assign displacements to output variable
*/
mx = (int) (maxpos % nx);
if (mx > nxh){
mx -= nx;
}
/* setting max displacement to zero */
out[2 * l] = 0;
//out[2 * l] = mx;
my = (int) (maxpos / nx);
if (my > nyh){
my -= ny;
}
/* setting max displacement to zero */
//out[2 * l + 1] = my;
out[2 * l + 1] = 0;
}
fftw_cleanup();
}