-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
63 lines (47 loc) · 1.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import pickle
import streamlit as st
import requests
def fetch_poster(movie_id):
url = "https://api.themoviedb.org/3/movie/{}?api_key=f0f74bbb1f845a9488b4e7c9f543e099&language=en-US".format(movie_id)
data = requests.get(url)
data = data.json()
poster_path = data['poster_path']
full_path = "http://image.tmdb.org/t/p/w500/" + poster_path
return full_path
def recommend(movie):
index = movies[movies['title'] == movie].index[0]
distances = sorted(list(enumerate(similarity[index])),reverse = True, key = lambda x:x[1])
recommended_movies_name = []
recommended_movies_poster=[]
for i in distances[1:6]:
movie_id = movies.iloc[i[0]]['movie_id']
recommended_movies_poster.append(fetch_poster(movie_id))
recommended_movies_name.append (movies.iloc[i[0]].title)
return recommended_movies_name, recommended_movies_poster
st.header("Movies Recommendation System Using Machine Learning")
movies = pickle.load(open('artificats/movie_list.pkl','rb'))
similarity = pickle.load(open('artificats/similarity.pkl','rb')
)
movies_list = movies['title'].values
selected_movie = st.selectbox(
'Type or select a movie to get a recommendation',
movies_list
)
if st.button('show recommendation'):
recommended_movies_name,recommended_movies_poster = recommend(selected_movie)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.text(recommended_movies_name[0])
st.image(recommended_movies_poster[0])
with col2:
st.text(recommended_movies_name[1])
st.image(recommended_movies_poster[1])
with col3:
st.text(recommended_movies_name[2])
st.image(recommended_movies_poster[2])
with col4:
st.text(recommended_movies_name[3])
st.image(recommended_movies_poster[3])
with col5:
st.text(recommended_movies_name[4])
st.image(recommended_movies_poster[4])