-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlipkin-Dmatrix.cpp
212 lines (182 loc) · 5.46 KB
/
lipkin-Dmatrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#include <iostream>
#include <cmath>
#include <fstream>
#include <lapacke.h>
#include <complex>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
double epsilon = 1;
int g = 2;
double chi;
bool zheev_cpp(MatrixXcd& A, vector<double>& lambda, char eigenvec_choice='N')
{
int N = A.cols();
int LDA = A.outerStride();
int INFO = 0;
double* w = new double [N];
char Nchar = 'N';
char Vchar = 'V';
char Uchar = 'U';
int LWORK = int(A.size())*4;
__complex__ double* WORK= new __complex__ double [LWORK];
double* RWORK = new double [3*LDA];
zheev_( &eigenvec_choice, &Uchar, &N, reinterpret_cast <__complex__ double*> (A.data()), &LDA, w, WORK, &LWORK, RWORK, &INFO );
lambda.clear();
for(int i=0; i<N; i++) lambda.push_back(w[i]);
delete[] w; delete[] RWORK; delete[] WORK;
return INFO==0;
}
bool zgeev_cpp(MatrixXcd& A, vector<double>& lambda, char eigenvec_choice='N')
{
int N = A.cols();
int LDA = A.outerStride();
int INFO = 0;
__complex__ double* w = new __complex__ double [N];
__complex__ double* vl;
__complex__ double* vr;
char Nchar = 'N';
char Vchar = 'V';
char Uchar = 'U';
int LWORK = pow(2, N);
__complex__ double* WORK= new __complex__ double [LWORK];
double* RWORK = new double [LWORK];
zgeev_(&Nchar, &eigenvec_choice, &N, reinterpret_cast <__complex__ double*> (A.data()), &LDA, w, vl, &LDA, vr, &LDA, WORK, &LWORK, RWORK, &INFO );
lambda.clear();
for(int i=0; i<N; i++) lambda.push_back(__real__ w[i]);
delete[] w; delete[] RWORK; delete[] WORK;
return INFO==0;
}
vector <double> stdEigenvalues(MatrixXcd A, bool (*diagonalization_routine)(MatrixXcd&, vector <double>&, char)=&zheev_cpp)
{
std::vector<double> lambda;
if(diagonalization_routine(A,lambda,'N')) return lambda;
}
VectorXd Eigenvalues(MatrixXcd A, bool (*diagonalization_routine)(MatrixXcd&, vector <double>&, char)=&zheev_cpp)
{
std::vector<double> lambda;
if(diagonalization_routine(A,lambda,'N'))
{
Map<ArrayXd> b(lambda.data(),lambda.size());
return b;
}
}
MatrixXcd Eigenvectors(MatrixXcd A, bool (*diagonalization_routine)(MatrixXcd&, vector <double>&, char)=&zheev_cpp)
{
std::vector<double> lambda;
if(diagonalization_routine(A,lambda,'V')) return A;
}
pair<MatrixXcd, vector<double>> stdEigenspectrum(MatrixXcd A, bool (*diagonalization_routine)(MatrixXcd&, vector <double>&, char)=&zheev_cpp)
{
std::vector<double> lambda;
if(diagonalization_routine(A,lambda,'V')) return make_pair(A,lambda);
}
pair<MatrixXcd, VectorXd> Eigenspectrum(MatrixXcd A, bool (*diagonalization_routine)(MatrixXcd&, vector <double>&, char)=&zheev_cpp)
{
std::vector<double> lambda;
if(diagonalization_routine(A,lambda,'V'))
{
Map<ArrayXd> b(lambda.data(),lambda.size());
return make_pair(A,b);
}
}
MatrixXd construct_H(double sigma0)
{
MatrixXd H = MatrixXd::Zero(2*g,2*g);
for(int i=0; i<2*g; i++) H(i,i) = pow(-1,i)*epsilon;
for(int i=0; i<2*g-1; i+=2) H(i,i+1) = -chi*sigma0;
for(int i=1; i<2*g; i+=2) H(i,i-1) = -chi*sigma0;
return H;
}
inline double del(int a1, int a2){return (a1==a2)?1:0;}
double comm_expectation(int i, int j, int v1, int v2, int w1, int w2, int k, int l, MatrixXd U)
{
double result = 0.0;
for(int x1=0; x1<2*g; x1++)
{
for(int x2=0; x2<2*g; x2++)
{
for(int x3=0; x3<2*g; x3++)
{
for(int x4=0; x4<2*g; x4++)
{
result += U(x1,v1)*U(x2,v2)*U(x3,w1)*U(x4,w2)*(del(i,x1)*del(j,x3)-del(i,x3)*del(j,x1))*(del(l,x2)*del(k,x4)-del(k,x2)*del(l,x4)) ;
}
}
}
}
cout << result << endl;
return result;
}
double lipkin_ijkl(int i, int j, int k, int l, MatrixXd U)
{
double result = 0.0;
for(int v=0; v<g; v++)
{
for(int w=0; w<g; w++)
{
result += comm_expectation(i,j,2*v,2*v+1,2*w,2*w+1,k,l,U) + comm_expectation(i,j,2*v,2*v+1,2*w+1,2*w,k,l,U) +
comm_expectation(i,j,2*v+1,2*v,2*w,2*w+1,k,l,U) + comm_expectation(i,j,2*v+1,2*v,2*w+1,2*w,k,l,U);
}
}
return -0.5*chi*result;
}
inline double fermi_fn(double e_minus_mu, double T) {return (isinf(exp(e_minus_mu/T)))? 0: 1/(exp(e_minus_mu/T)+1);}
MatrixXd construct_A(VectorXd hf, MatrixXd U, double T)
{
MatrixXd A = MatrixXd::Zero(g*g,g*g);
for(int j=0; j<2*g; j+=2)
{
for(int i=1; i<2*g; i+=2)
{
int it1 = j/2*g+(i-1)/2;
for(int l=0; l<2*g; l+=2)
{
for(int k=1; k<2*g; k+=2)
{
int it2 = l/2*g+(k-1)/2;
A(it1,it2) = (hf(i)-hf(j))*del(i,k)*del(j,l)+ lipkin_ijkl(i,l,j,k,U)*(fermi_fn(hf(k),T)-fermi_fn(hf(l),T));
}
}
}
}
return A;
}
MatrixXd construct_B(VectorXd hf, MatrixXd U, double T)
{
MatrixXd B = MatrixXd::Zero(g*g,g*g);
for(int j=0; j<2*g; j+=2)
{
for(int i=1; i<2*g; i+=2)
{
int it1 = j/2*g+(i-1)/2;
for(int l=0; l<2*g; l+=2)
{
for(int k=1; k<2*g; k+=2)
{
int it2 = l/2*g+(k-1)/2;
B(it1,it2) = lipkin_ijkl(i,k,j,l,U)*(fermi_fn(hf(k),T)-fermi_fn(hf(l),T));
}
}
}
}
return B;
}
double squareroot(double x){return sqrt(x);}
int main(int argc, char* argv[])
{
if(argc!=4) {cerr << "Enter (1) chi (2) beta (3) sigma0\n"; exit(1);}
chi = atof(argv[1]);
double beta = atof(argv[2]);
double sigma0 = atof(argv[3]);
auto H = construct_H(sigma0);
VectorXd hf_eivals = Eigenvalues(H);
MatrixXd U = Eigenvectors(H).real();
MatrixXd A = construct_A(hf_eivals, U, 1/beta);
MatrixXd B = construct_B(hf_eivals, U, 1/beta);
cout << H << endl << endl << hf_eivals.transpose() << endl << endl;
cout << U << endl << endl;
cout << A << endl << endl << B << endl << endl;
MatrixXd D = (A+B)*(A-B);
cout << Eigenvalues(D).transpose() << endl;
}