-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_few_shot.py
345 lines (269 loc) · 14.6 KB
/
test_few_shot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import argparse
from sched import scheduler
import yaml
import os
os.chdir('../')
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import scipy.stats
from torch.utils.data import DataLoader
from sklearn.metrics import roc_auc_score
from functools import reduce
from operator import mul
import datasets
from datasets import mini_imagenet
import models
from models.classifier import AdaptiveBiasClassifier, AdaptiveCenterClassifier, AdaptiveClassifier, LinearClassifier, centerClassifier, cosineClassifier, AlignClassifier
from models.rfs_resnet import resnet12, weight_align, weight_normalize, adaptive_weight_align, adaptive_weight_normalize
import utils
import utils.few_shot as fs
from datasets.samplers import CategoriesSampler, DatasetSplit_tensor
import copy
import random
def mean_confidence_interval(data, confidence=0.95):
a = 1.0 * np.array(data)
n = len(a)
se = scipy.stats.sem(a)
h = se * scipy.stats.t.ppf((1 + confidence) / 2., n - 1)
return h
def main(config):
# dataset
novel_dataset = datasets.make(config['dataset'], **config['dataset_args'])
utils.log('dataset: {} (x{}), {}'.format(
novel_dataset[0][0].shape, len(novel_dataset), novel_dataset.n_classes))
n_way = 5
n_shot, n_query = args.shot, 15
n_batch = 200
ep_per_batch = 1
if 'mini' in args.config:
n_classes = 64
elif 'tiered' in args.config:
n_classes = 200
else:
n_classes = 800
batch_sampler = CategoriesSampler(
novel_dataset.label, n_batch, n_way, n_shot + n_query,
ep_per_batch=ep_per_batch)
novel_loader = DataLoader(novel_dataset, batch_sampler=batch_sampler,
num_workers=8, pin_memory=True)
#using base data -GFSL
#non_iid = args.non_iid
#base_dataset = datasets.make(config['base_dataset'],
# **config['base_dataset_args'])
#batch_sampler = CategoriesSampler(
# base_dataset.label, n_batch, non_iid, n_shot,
# ep_per_batch=1)
#base_loader = DataLoader(base_dataset, batch_sampler=batch_sampler,
# num_workers=8, pin_memory=True)
val_dataset = datasets.make(config['val_dataset'],
**config['val_dataset_args'])
val_loader = DataLoader(val_dataset, config['batch_size'],
num_workers=8, pin_memory=True)
# model
if config.get('load') is None:
model = models.make('meta-baseline', encoder=None)
else:
model_sv = torch.load(config['load'])
model_sv['model'] = 'fine-tune'
model = models.make(model_sv['model'], **model_sv['model' + '_args'])
# load pre-trained model
encoder = models.load(torch.load(config['load'])).encoder
classifier = models.load(torch.load(config['load'])).classifier
model.encoder.load_state_dict(encoder.state_dict())
model.classifier.load_state_dict(classifier.state_dict())
if config.get('load_encoder') is not None:
encoder = models.load(torch.load(config['load_encoder'])).encoder
model.encoder = encoder
if config.get('_parallel'):
model = nn.DataParallel(model)
model.train()
utils.log('num params: {}'.format(utils.compute_n_params(model)))
aves_keys = ['vl', 'va', 'vl_base', 'va_base','va_all','va_base_tmp']
aves = {k: utils.Averager() for k in aves_keys}
optimizer, lr_scheduler = utils.make_optimizer(
model.parameters(),
config['optimizer'], **config['optimizer_args'])
batch = 10000
test_epochs = args.test_epochs
novel_epoch = args.novel_epochs
# fix seed
seed = 0
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
va_lst = []
va_base_lst = []
va_all_lst = []
# freeze bn
if config.get('freeze_bn'):
utils.freeze_bn(model)
# freeze extractor
for name, param in model.named_parameters():
if 'classifier' in name:
param.requires_grad = True
else:
param.requires_grad = False
model.cuda()
print(model)
linear_weight = model.classifier.linear.weight.data.detach()
linear_bias = model.classifier.linear.bias.data.detach()
for epoch in range(1, test_epochs + 1):
for batch_idx, novel_batch in (enumerate(novel_loader)):
data, labels,data_idx = novel_batch
data_idx = data_idx.view(n_way, n_shot + n_query)
shot_idx, query_idx = data_idx.split([n_shot, n_query],dim=1)
novel_dataset.fine_tune = True
novel_few_loader = DataLoader(DatasetSplit_tensor(novel_dataset, shot_idx.reshape([n_way * n_shot])), n_batch, shuffle=False)
x_shot, x_query = fs.split_shot_query(
data.cuda(), n_way, n_shot, n_query,
ep_per_batch=ep_per_batch)
shot_shape = x_shot.shape[:-3]
query_shape = x_query.shape[:-3]
img_shape = x_shot.shape[-3:]
x_shot = x_shot.view(-1, *img_shape)
x_query = x_query.view(-1, *img_shape)
# train
model.classifier = AdaptiveCenterClassifier(640, n_classes, n_way, bias=True).cuda()
model.classifier.base_linear.weight.data[:n_classes,:] = copy.deepcopy(linear_weight[:n_classes,:].detach())
model.classifier.base_linear.bias.data[:n_classes] = copy.deepcopy(linear_bias[:n_classes].detach())
model.cuda()
model.train()
if config.get('freeze_bn'):
utils.freeze_bn(model)
optimizer = torch.optim.SGD([{'params': model.classifier.base_linear.parameters(), 'lr':args.lr},
{'params': model.classifier.novel_linear.parameters(),'lr':args.lr}],
lr=0.01, weight_decay=args.wd, momentum=0.9)
label = fs.make_nk_label(n_way, n_shot,
ep_per_batch=ep_per_batch, n_classes=n_classes).cuda()
#print ("Base mean:{}, Novel mean:{}".format( torch.mean(torch.mean(model.classifier.base_linear.weight.data,dim=1,keepdim=True)), torch.mean(torch.mean(model.classifier.novel_linear.weight.data,dim=1,keepdim=True))))
#print ("Base var:{}, Novel var:{}".format( model.classifier.base_linear.weight.data.var(dim=1,keepdim=True).mean(), model.classifier.novel_linear.weight.data.var(dim=1,keepdim=True).mean()))
for idx in range(1, novel_epoch+1):
for novel_data, novel_label in (novel_few_loader):
novel_data, novel_label = novel_data.cuda(), novel_label.cuda()
novel_data.requires_grad=True
novel_label.requires_grad=False
#only new
#logits = model(x_shot).view(-1, n_way)
logits = model(novel_data).view(-1, n_classes + n_way)
loss = F.cross_entropy(logits, label)
acc = utils.compute_acc(logits, label)
optimizer.zero_grad()
loss.backward()
#max_norm = 0.25
#torch.nn.utils.clip_grad_norm_(model.classifier.parameters(), max_norm)
optimizer.step()
logits = None; loss = None
classifier = model.classifier
model.classifier = AdaptiveBiasClassifier(640, n_classes, n_way, bias=True).cuda()
model.classifier.base_linear.weight.data = copy.deepcopy(classifier.base_linear.weight.data.detach())
model.classifier.novel_linear.weight.data = copy.deepcopy(classifier.novel_linear.weight.data.detach())
model.classifier.base_linear.bias.data = copy.deepcopy(classifier.base_linear.bias.data .detach())
model.classifier.novel_linear.bias.data = copy.deepcopy(classifier.novel_linear.bias.data.detach())
model.classifier.bias_linear.alpha.data[:n_classes] = (torch.std(model.classifier.novel_linear.weight.data,dim=1,keepdim=True).mean()\
/ torch.std(model.classifier.base_linear.weight.data,dim=1,keepdim=True)).reshape(model.classifier.bias_linear.alpha.data[:n_classes].shape)
model.cuda()
model.train()
if config.get('freeze_bn'):
utils.freeze_bn(model)
optimizer_balanced = torch.optim.SGD([{'params': model.classifier.base_linear.parameters(), 'lr':0.000},
{'params': model.classifier.novel_linear.parameters(),'lr':0.00},
{'params': model.classifier.bias_linear.parameters(),'lr':args.add_lr}],
weight_decay=5e-4,momentum=0.9)
label = fs.make_nk_label(n_way, n_shot,
ep_per_batch=ep_per_batch, n_classes=n_classes).cuda()
#print ("Base mean:{}, Novel mean:{}".format( torch.mean(torch.mean(model.classifier.base_linear.weight.data,dim=1,keepdim=True)), torch.mean(torch.mean(model.classifier.novel_linear.weight.data,dim=1,keepdim=True))))
#print ("Base var:{}, Novel var:{}".format( model.classifier.base_linear.weight.data.var(dim=1,keepdim=True).mean(), model.classifier.novel_linear.weight.data.var(dim=1,keepdim=True).mean()))
for idx in range(1, args.add_iter+1):
for ovel_data, novel_label in (novel_few_loader):
novel_data, novel_label = novel_data.cuda(), novel_label.cuda()
novel_data.requires_grad=True
novel_label.requires_grad=False
#only new
#logits = model(x_shot).view(-1, n_way)
logits = model(novel_data).view(-1, n_classes + n_way)
loss = F.cross_entropy(logits, label)
acc = utils.compute_acc(logits, label)
optimizer_balanced.zero_grad()
loss.backward()
#max_norm = 0.25
#torch.nn.utils.clip_grad_norm_(model.classifier.parameters(), max_norm)
optimizer_balanced.step()
#scheduler.step()
logits = None; loss = None
#model.classifier.linear.weight.data[:n_classes,:] = copy.deepcopy(linear_weight[:n_classes,:].detach())
#print ("Base mean:{}, Novel mean:{}".format( torch.mean(torch.mean(model.classifier.base_linear.weight.data,dim=1,keepdim=True)), torch.mean(torch.mean(model.classifier.novel_linear.weight.data,dim=1,keepdim=True))))
#print ("Base var:{}, Novel var:{}".format( model.classifier.base_linear.weight.data.var(dim=1,keepdim=True).mean(), model.classifier.novel_linear.weight.data.var(dim=1,keepdim=True).mean()))
# test
novel_dataset.fine_tune = False
model.eval()
with torch.no_grad():
#mean_base = torch.mean(torch.norm(model.classifier.base_linear.weight.data,dim=1)).item()
#mean_novel = torch.mean(torch.norm(model.classifier.novel_linear.weight.data,dim=1)).item()
#print("mean_base:{}, mean_novel:{}".format(mean_base, mean_novel))
logits = model(x_query).view(-1, n_classes + n_way)
label = fs.make_nk_label(n_way, n_query,
ep_per_batch=ep_per_batch, n_classes=n_classes).cuda()
loss = F.cross_entropy(logits, label)
acc = utils.compute_acc(logits, label)
aves['vl'].add(loss.item(), len(data))
aves['va'].add(acc, len(data))
va_lst.append(acc)
#base
for data_base, label_base,_ in (val_loader):
data_base, label_base = data_base.cuda(), label_base.cuda()
with torch.no_grad():
logits_base = model(data_base)
lose_base = F.cross_entropy(logits_base, label_base)
acc_base = utils.compute_acc(logits_base, label_base)
aves['vl_base'].add(lose_base.item())
aves['va_base'].add(acc_base)
va_base_lst.append(acc_base)
aves['va_base_tmp'].add(acc_base)
va_base_lst.append(acc_base)
aves['va_all'].add((acc+aves['va_base_tmp'].item())/2)
va_all_lst.append((acc+aves['va_base_tmp'].item())/2)
aves['va_base_tmp'].n = 0
aves['va_base_tmp'].v = 0
print('\n epoch:{} novel:{:.2f} | {:.2f}, base:{:.2f}, all:{:.2f}'.format(batch_idx, acc*100, aves['va'].item() * 100, aves['va_base'].item() * 100, aves['va_all'].item() * 100))
print('test epoch {}: acc={:.2f} +- {:.2f} (%), loss={:.4f} (@{})'.format(
epoch, aves['va'].item() * 100,
mean_confidence_interval(va_lst) * 100,
aves['vl'].item(), labels[-1]))
print(' val base {:.4f}|{:.4f} +- {:.2f} (%) '.format(aves['vl_base'].item(), aves['va_base'].item()*100, mean_confidence_interval(va_base_lst) * 100 ))
print(' all base {:.4f}|{:.4f} +- {:.2f} (%) '.format(aves['vl_base'].item(), aves['va_all'].item()*100, mean_confidence_interval(va_all_lst) * 100 ))
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/test_few_shot_tiered.yaml')
parser.add_argument('--shot', type=int, default=5)
parser.add_argument('--test-epochs', type=int, default=10)
parser.add_argument('--sauc', action='store_true')
parser.add_argument('--gpu', default='0')
parser.add_argument('--wd', default=1e-2)
parser.add_argument('--lr', default=0.001)
parser.add_argument('--novel-epochs', default=100)
parser.add_argument('--add_iter', default=500)
parser.add_argument('--add_lr', default=0.001)
# args = parser.parse_args()
'''
args = easydict.EasyDict({
'config': 'configs/test_few_shot_mini.yaml',
'test_epochs': 3,
'sauc': False,
'gpu': '0',
'lr': 0.001,
'wd': 5e-4,
'shot': 5,
'novel_epochs':500,
'add_iter': 50,
'add_lr': 0.001,
})
'''
config = yaml.load(open(args.config, 'r'), Loader=yaml.FullLoader)
if len(args.gpu.split(',')) > 1:
config['_parallel'] = True
utils.set_gpu(args.gpu)
main(config)