This repository has been archived by the owner on Feb 2, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_layer.py
159 lines (132 loc) · 5.29 KB
/
multi_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
import platform
import time
from pyspark import SparkConf, SparkContext
#sigmoid function
#when deriv==true, return the derivative function value instead.
def nonlin(x, deriv=False):
if (deriv == True):
return x * (1 - x)
sigmoid = np.clip(x, -500, 500)
return 1 / (1 + np.exp(-sigmoid))
def train(node_num, X, y, syn):
l = [[] for _ in range(len(node_num))]
# l0 is the X
l[0] = X
# calculate the value on layer1 & y, with non-linear(sigmoid) function
for i in range(0,len(node_num)-1):
l[i+1] = nonlin(np.dot(l[i], syn[i]))
softmax = [0 for _ in range(node_num[-1])]
for i in range(0, node_num[-1]):
z = pow(np.e, l[-1][0][i])
softmax[i] = z
sum_sft = sum(softmax)
for i in range(0, node_num[-1]):
softmax[i] = softmax[i] / sum_sft
error = [0 for _ in range(len(node_num))]
for i in xrange(len(node_num)-1,-1,-1):
if i == len(node_num)-1:
error[i] = y - softmax
else:
error[i] = error[i+1].dot(syn[i].T) * nonlin(l[i], deriv=True)
gradient = []
for i in range(0,len(node_num)-1):
gradient.append(l[i].T.dot(error[i+1]))
gradient.append(error[-1])
return gradient
def classify(node_num, X, syn):
def nonlin(x, deriv=False):
if (deriv == True):
return x * (1 - x)
sigmoid = np.clip(x, -500, 500)
return 1 / (1 + np.exp(-sigmoid))
l = [[] for _ in range(len(node_num))]
l[0] = X
for i in range(0,len(node_num)-1):
l[i+1] = nonlin(np.dot(l[i], syn[i]))
return l[-1][0]
if __name__ == "__main__":
#init spark
conf = (SparkConf()
.setAppName("SPARK_ANN")
.setMaster("spark://192.168.0.3:7077"))
# .setMaster("local[*]"))
sc = SparkContext(conf=conf)
#load from file
if platform.system() == 'Linux':
path = '/home/master/Downloads/WISDM_at_v2.0/WISDM_at_v2.0_raw_fold100.txt'
elif platform.system() == 'Windows':
path = 'C:\Users\KUsch\Downloads\WISDM_at_v2.0\WISDM_at_v2.0_raw.txt'
else:
path = '/Users/Abj/Downloads/WISDM_ar_v1.1/WISDM_spectrum_40_overlap_20_train.csv'
print "<<Preprocessing>>"
csv = sc.textFile(path,24)
#unzip folded data
# csv = csv.flatMap(lambda line: line.split(';'))
#filter weird data
data = csv.map(lambda line: (line.split(","))).filter(lambda line: len(line) == 64)
#form change to (X,Y,Z), result
def change(line):
for i in range(63):
line[i] = float(line[i])
line[63] = int(round(float(line[63])))-1
temp = [0.0 for _ in range(6)]
temp[line[63]] = 1.0
temp_list = [line[i] for i in range(63)]
return (tuple(temp_list), temp)
train_data = data.map(lambda line: change(line))
print train_data.count()
#first = 3, last = 6
node_num = [63,500,6]
num_of_train = 500
batch_num = 1
syn = []
for i in range(0,len(node_num)-1):
# rand in -0.1 ~ +0.1
syn.append(np.random.random((node_num[i], node_num[i+1]))*0.2-0.1)
train_data = train_data.zipWithIndex()
#split test and train data
test_ratio = 10.0
rdd_size = train_data.count()
test_data = train_data.filter(lambda (data,index): index%int((100/test_ratio)) == 0)
train_data = train_data.filter(lambda (data,index): index%int((100/test_ratio)) != 0)
accurancy = [0.0]
print "Start training >>"
print "node_num = "+str(node_num)+", num_of_train = "+str(num_of_train)+", batch_num = "+str(batch_num)
for loop in range(0,num_of_train):
try:
print "train loop = ", loop+1
train_batch = train_data.filter(lambda (data,index): index%batch_num == loop%batch_num)
rdd = train_batch.map(lambda (data,index): train(node_num,\
np.expand_dims(data[0],axis=0),\
np.expand_dims(data[1],axis=0),\
syn))
delta = [0 for _ in range(len(node_num))]
for i in range(0,len(node_num)-1):
delta[i] = rdd.map(lambda x: x[i]).mean()
error = rdd.map(lambda x: x[-1]).mean()
#alpha if learning rate
alpha = 0.05
for i in range(0,len(node_num)-1):
syn[i] += alpha * delta[i]
num_of_test = test_data.count()
print "Start testing >>"
print "num_of_test = " + str(num_of_test)
test_data_rdd = test_data.map(lambda (data, index): (data[0], data[1], classify(node_num, np.expand_dims(data[0], axis=0), syn)))
test_result = test_data_rdd.filter(lambda data: data[1][data[2].tolist().index(max(data[2]))] == 1.0)
succeed = test_result.count()
# print "correct : ", succeed
# print "wrong : ", (num_of_test - succeed)
print "accurancy : ", succeed * 100.0 / num_of_test, "%"
accurancy.append(succeed * 100.0 / num_of_test)
except:
break
for i in accurancy:
print i
# import matplotlib.pyplot as plt
# plt.title('change in accurancy at node='+str(node_num))
# plt.axes([1,num_of_train,0.0,100.0])
# plt.plot(accurancy)
# plt.xlabel('loop')
# plt.ylabel('accurancy')
# plt.show()