This repository was archived by the owner on Jan 29, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodels.py
352 lines (243 loc) · 13.3 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
class AttentionFeatures(nn.Module):
"""
Page 3 of the paper
attention_features (code tokens c, context h_{t-1})
C <- lookupandpad(c, E)
L1 <- ReLU(Conv1d(C, K_{l1}))
L2 <- Conv1d(L1, K_{l2}) * h_{t-1}
Lfeat <- L2/||L2||_2
return Lfeat
"""
def __init__(self, embedding_dim, k1, w1, k2, w2, w3, dropout):
super().__init__()
self.w1 = w1
self.k1 = k1
self.w2 = w2
self.k2 = k2
#self.w3 = w3 #use this to calculate padding
self.conv1 = nn.Conv1d(embedding_dim, k1, w1)
self.conv2 = nn.Conv1d(k1, k2, w2)
self.do = nn.Dropout(dropout)
self.activation = nn.PReLU()
def forward(self, C, h_t):
#C = embedded body tokens
#h_t = previous hidden state used to predict name token
#C = [bodies len, batch size, emb dim]
#h_t = [1, batch size, k2]
C = C.permute(1, 2, 0) #input to conv needs n_channels as dim 1
#C = [batch size, emb dim, bodies len]
h_t = h_t.permute(1, 2, 0) #from [1, batch size, k2] to [batch size, k2, 1]
#h_t = [batch size, k2, 1]
L_1 = self.do(self.activation(self.conv1(C)))
#L_1 = [batch size, k1, bodies len - w1 + 1]
L_2 = self.do(self.conv2(L_1)) * h_t
#L_2 = [batch size, k2, bodies len - w1 - w2 + 2]
L_feat = F.normalize(L_2, p=2, dim=1)
#L_feat = [batch size, k2, bodies len - w1 - w2 + 2]
return L_feat
class AttentionWeights(nn.Module):
"""
Page 3 of the paper
attention_features (attention features Lfeat, kernel K)
return Softmax(Conv1d(Lfeat, K))
"""
def __init__(self, k2, w3, dropout):
super().__init__()
self.conv1 = nn.Conv1d(k2, 1, w3)
self.do = nn.Dropout(dropout)
def forward(self, L_feat, log=False):
#L_feat = [batch size, k2, bodies len - w1 - w2 + 2]
x = self.do(self.conv1(L_feat))
#x = [batch size, 1, bodies len - w1 - w2 - w3 + 3]
x = x.squeeze(1)
#x = [batch size, bodies len - w1 - w2 - w3 + 3]
if log:
x = F.log_softmax(x, dim=1)
else:
x = F.softmax(x, dim=1)
#x = [batch size, bodies len - w1 - w2 - w3 + 3]
return x
class ConvAttentionNetwork(nn.Module):
def __init__(self, vocab_size, embedding_dim, k1, k2, w1, w2, w3, dropout, pad_idx):
super().__init__()
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.k1 = k1
self.k2 = k2
self.w1 = w1
self.w2 = w2
self.w3 = w3
self.dropout = dropout
self.pad_idx = pad_idx
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_idx)
self.do = nn.Dropout(dropout)
self.gru = nn.GRU(embedding_dim, k2)
self.attn_feat = AttentionFeatures(embedding_dim, k1, w1, k2, w2, w3, dropout)
self.attn_weights = AttentionWeights(k2, w3, dropout)
self.bias = nn.Parameter(torch.ones(vocab_size))
n_padding = w1 + w2 + w3 - 3
self.padding = torch.zeros(n_padding, 1).fill_(pad_idx).long()
def forward(self, bodies, names, tf=None):
if tf is None:
tf = self.dropout
#bodies = [bodies len, batch size]
#names = [names len, batch size]
#stores the probabilities generated for each token
outputs = torch.zeros(names.shape[0], names.shape[1], self.vocab_size).to(names.device)
#outputs = [name len, batch size, vocab dim]
#need to pad the function body so after it has been fed through
#the convolutional layers it is the same size as the original function body
bodies_padded = torch.cat((bodies, self.padding.expand(-1, bodies.shape[1]).to(bodies.device)))
#bodies_padded = [bodies len + w1 + w2 + w3 - 3, batch_size]
#from now on when we refer to bodies len, we mean the padded version
#convert function body tokens into their embeddings
emb_b = self.embedding(bodies_padded)
#emb_b = [bodies len, batch size, emb dim]
#first input to the gru is the first token of the function name
#which is a start of sentence token
output = names[0]
#generate predicted function name tokens one at a time
for i in range(1, names.shape[0]):
#initial hidden state is start of sentence token passed through gru
#subsequent hidden states from either the previous token predicted by the model
#or the ground truth token the model should have predicted
_, h_t = self.gru(self.embedding(output).unsqueeze(0))
#h_t = [1, batch size, k2]
#computes `k2` features for each token which are scaled by h_t
L_feat = self.attn_feat(emb_b, h_t)
#L_feat = [batch size, k2, bodies len - w1 - w2 + 2]
#computes the attention values for each token in the function body
#the second dimension is now equal to the original unpadded `bodies len` size
alpha = self.attn_weights(L_feat)
#alpha = [batch size, bodies len - w1 - w2 - w3 + 3]
#emb_b also contains the padding tokens so we slice these off
emb_b_slice = emb_b.permute(1, 0, 2)[:, :bodies.shape[0], :]
#emb_b = [batch_size, bodies len, emb dim]
#apply the attention to the embedded function body tokens
n_hat = torch.sum(alpha.unsqueeze(2) * emb_b_slice, dim=1)
#n_hat = [batch size, emb dim]
#E is the embedding layer weights
E = self.embedding.weight.unsqueeze(0).expand(bodies.shape[1],-1,-1)
#E = [batch size, vocab size, emb dim]
#matrix multiply E and n_hat and apply a bias
#n is the probability distribution over the vocabulary for the predicted next token
n = torch.bmm(E, n_hat.unsqueeze(2)).squeeze(2) + self.bias.unsqueeze(0).expand(bodies.shape[1], -1)
#n = [batch size, vocab size]
#store prediction probability distribution in large tensor that holds
#predictions for each token in the function name
outputs[i] = n
#with probability of `tf`, use the model's prediction of the next token
#as the next token to feed into the model (to become the next h_t)
#with probability 1-`tf`, use the actual ground truth next token as
#the next token to feed into the model
#teacher forcing ratio is equal to dropout during training and 0 during inference
if random.random() < tf:
#model's predicted token highest value in the probability distribution
top1 = n.max(1)[1]
output = top1
else:
output = names[i]
#outputs = [name len, batch size, vocab dim]
return outputs
class CopyAttentionNetwork(nn.Module):
def __init__(self, vocab_size, embedding_dim, k1, k2, w1, w2, w3, dropout, pad_idx):
super().__init__()
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.k1 = k1
self.k2 = k2
self.w1 = w1
self.w2 = w2
self.w3 = w3
self.dropout = dropout
self.pad_idx = pad_idx
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_idx)
self.do = nn.Dropout(dropout)
self.gru = nn.GRU(embedding_dim, k2)
self.attn_feat = AttentionFeatures(embedding_dim, k1, w1, k2, w2, w3, dropout)
self.attn_weights_alpha = AttentionWeights(k2, w3, dropout)
self.attn_weights_kappa = AttentionWeights(k2, w3, dropout)
self.conv1 = nn.Conv1d(k2, 1, w3)
self.bias = nn.Parameter(torch.ones(vocab_size))
n_padding = w1 + w2 + w3 - 3
self.padding = torch.zeros(n_padding, 1).fill_(pad_idx).long()
def forward(self, bodies, names, tf=None):
if tf is None:
tf = self.dropout
#bodies = [bodies len, batch size]
#names = [names len, batch size]
#stores the probabilities generated for each token
outputs = torch.zeros(names.shape[0], names.shape[1], self.vocab_size).to(names.device)
#outputs = [names len, batch size, vocab dim]
#stores the copy attention generated for each token
kappas = torch.zeros(names.shape[0], names.shape[1], bodies.shape[0]).to(names.device)
#kappas = [name len, batch size, bodies len]
#stores the prob of doing a copy for each token
lambdas = torch.zeros(names.shape[0], names.shape[1]).to(names.device)
#lambdas = [name len, batch size]
#need to pad the function body so after it has been fed through
#the convolutional layers it is the same size as the original function body
bodies_padded = torch.cat((bodies, self.padding.expand(-1, bodies.shape[1]).to(bodies.device)))
#bodies_padded = [bodies len + w1 + w2 + w3 - 3, batch_size]
#from now on when we refer to bodies len, we mean the padded version
#convert function body tokens into their embeddings
emb_b = self.embedding(bodies_padded)
#emb_b = [bodies len, batch size, emb dim]
#first input to the gru is the first token of the function name
#which is a start of sentence token
output = names[0]
#generate predicted function name tokens one at a time
for i in range(1, names.shape[0]):
#initial hidden state is start of sentence token passed through gru
#subsequent hidden states from either the previous token predicted by the model
#or the ground truth token the model should have predicted
_, h_t = self.gru(self.embedding(output).unsqueeze(0))
#h_t = [1, batch size, k2]
#computes `k2` features for each token which are scaled by h_t
L_feat = self.attn_feat(emb_b, h_t)
#L_feat = [batch size, k2, bodies len - w1 - w2 + 2]
#alpha is the attention values for each token in the function body
#kappa is the probability that each token in the function body is copied
#the second dimension is now equal to the original unpadded `bodies len` size
alpha = self.attn_weights_alpha(L_feat)
kappa = self.attn_weights_kappa(L_feat, log=True)
#alpha = [batch size, bodies len - w1 - w2 - w3 + 3]
#kappa = [batch size, bodies len - w1 - w2 - w3 + 3]
#calculate the weight of predicting by copying from body vs. predicting by guessing from vocab
_lambda = F.max_pool1d(torch.sigmoid(self.do(self.conv1(L_feat))), alpha.shape[1]).squeeze(2)
lambdas[i] = _lambda.permute(1, 0)
#emb_b also contains the padding tokens so we slice these off
emb_b_slice = emb_b.permute(1, 0, 2)[:, :bodies.shape[0], :]
#emb_b = [batch_size, bodies len, emb dim]
#apply the attention to the embedded function body tokens
n_hat = torch.sum(alpha.unsqueeze(2) * emb_b_slice, dim=1)
#n_hat = [batch size, emb dim]
#E is the embedding layer weights
E = self.embedding.weight.unsqueeze(0).expand(bodies.shape[1],-1,-1)
#E = [batch size, vocab size, emb dim]
#matrix multiply E and n_hat and apply a bias
#n is the probability distribution over the vocabulary for the predicted next token
n = torch.bmm(E, n_hat.unsqueeze(2)).squeeze(2) + self.bias.unsqueeze(0).expand(bodies.shape[1], -1)
#n = [batch size, vocab size]
#store prediction probability distribution in large tensor that holds
#predictions for each token in the function name
outputs[i] = F.log_softmax(n,dim=1)
#store copy probability distribution
kappas[i] = kappa
#with probability of `tf`, use the model's prediction of the next token
#as the next token to feed into the model (to become the next h_t)
#with probability 1-`tf`, use the actual ground truth next token as
#the next token to feed into the model
#teacher forcing ratio is equal to dropout during training and 0 during inference
if random.random() < tf:
#model's predicted token highest value in the probability distribution
top1 = n.max(1)[1]
output = top1
else:
output = names[i]
#outputs = [name len, batch size, vocab dim]
return outputs, kappas, lambdas