-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
86 lines (73 loc) · 2.41 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
try:
from numba import jit
except ImportError:
def jit(nopython):
def decorator_jit(func):
return func
return decorator_jit
def load_models(file):
""" Load model parameter from csv file.
Parameters
----------
file: string
Name of file with model parameters.
Returns
-------
parameters: list of dict
For each cell a dictionary with model parameters.
"""
parameters = []
with open(file, 'r') as file:
header_line = file.readline()
header_parts = header_line.strip().split(",")
keys = header_parts
for line in file:
line_parts = line.strip().split(",")
if len(line_parts) <= 1:
continue
parameter = {}
for i in range(len(keys)):
if keys[i] in ['cell', 'name']:
parameter[keys[i]] = line_parts[i]
else:
parameter[keys[i]] = float(line_parts[i])
parameters.append(parameter)
return parameters
@jit(nopython=True)
def simulate(stimulus, deltat=0.00005, v_zero=0.0, a_zero=2.0,
threshold=1.0, v_base=0.0, delta_a=0.08, tau_a=0.1,
v_offset=-10.0, mem_tau=0.015, noise_strength=0.05,
input_scaling=60.0, dend_tau=0.001, ref_period=0.001):
""" Simulate a P-unit.
Returns
-------
spike_times: 1-D array
Simulated spike times in seconds.
"""
# initial conditions:
v_dend = stimulus[0]
v_mem = v_zero
adapt = a_zero
# prepare noise:
noise = np.random.randn(len(stimulus))
noise *= noise_strength / np.sqrt(deltat)
# rectify stimulus array:
stimulus = stimulus.copy()
stimulus[stimulus < 0.0] = 0.0
# integrate:
spike_times = []
for i in range(len(stimulus)):
v_dend += (-v_dend + stimulus[i]) / dend_tau * deltat
v_mem += (v_base - v_mem + v_offset + (
v_dend * input_scaling) - adapt + noise[i]) / mem_tau * deltat
adapt += -adapt / tau_a * deltat
# refractory period:
if len(spike_times) > 0 and (deltat * i) - spike_times[-1] < ref_period + deltat/2:
v_mem = v_base
# threshold crossing:
if v_mem > threshold:
v_mem = v_base
spike_times.append(i * deltat)
adapt += delta_a / tau_a
return np.array(spike_times)