-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
209 lines (172 loc) · 6.77 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os.path as osp
from pathlib import Path
from typing import Tuple
import numpy as np
import pandas as pd
import scipy.io as sio
import torch
from ogb.graphproppred import PygGraphPropPredDataset
from scipy.special import comb
from sklearn.model_selection import StratifiedKFold
from torch_geometric.data import InMemoryDataset, download_url
from torch_geometric.data.data import Data
from torch_geometric.datasets import ZINC
from torch_geometric.datasets import TUDataset as TUDataset_
from torch_geometric.transforms import Constant
class GraphCountDataset(InMemoryDataset):
def __init__(self, root, name, transform=None, pre_transform=None):
self.root = osp.join(root, name)
self.url = "https://github.com/LingxiaoShawn/GNNAsKernel/raw/main/data/subgraphcount/raw/randomgraph.mat"
super().__init__(self.root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
# Normalize as in GNN-AK
self.data.y = self.data.y / self.data.y.std(0)
a = sio.loadmat(self.raw_paths[0])
self.train_idx = torch.from_numpy(a["train_idx"][0])
self.val_idx = torch.from_numpy(a["val_idx"][0])
self.test_idx = torch.from_numpy(a["test_idx"][0])
@property
def raw_file_names(self):
return ["randomgraph.mat"]
@property
def processed_file_names(self):
return "data.pt"
def download(self):
download_url(self.url, self.raw_dir)
def process(self):
a = sio.loadmat(self.raw_paths[0])
A = a["A"][0]
data_list = []
for i in range(len(A)):
a = A[i]
A2 = a.dot(a)
A3 = A2.dot(a)
tri = np.trace(A3) / 6
tailed = ((np.diag(A3) / 2) * (a.sum(0) - 2)).sum()
cyc4 = 1 / 8 * (np.trace(A3.dot(a)) + np.trace(A2) - 2 * A2.sum())
cus = a.dot(np.diag(np.exp(-a.dot(a).sum(1)))).dot(a).sum()
deg = a.sum(0)
star = 0
for j in range(a.shape[0]):
star += comb(int(deg[j]), 3)
expy = torch.tensor([[tri, tailed, star, cyc4, cus]])
E = np.where(A[i] > 0)
edge_index = torch.Tensor(np.vstack((E[0], E[1]))).type(torch.int64)
x = torch.ones(A[i].shape[0], 1)
data_list.append(Data(edge_index=edge_index, x=x, y=expy.to(torch.float)))
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
def separate_data(self):
return {"train": self.train_idx, "val": self.val_idx, "test": self.test_idx}
class TUDataset(TUDataset_):
def __init__(
self,
root: str,
name: str,
transform=None,
pre_transform=None,
pre_filter=None,
use_node_attr: bool = False,
use_edge_attr: bool = False,
cleaned: bool = False,
):
super().__init__(
root,
name,
transform,
pre_transform,
pre_filter,
use_node_attr,
use_edge_attr,
cleaned,
)
self.mean, self.std = None, None
def download(self):
super().download()
def process(self):
super().process()
def separate_data(self, seed, fold_idx):
# code taken from GIN and adapted
# since we only consider train and valid, use valid as test
assert 0 <= fold_idx and fold_idx < 10, "fold_idx must be from 0 to 9."
skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)
labels = self.data.y.numpy()
idx_list = []
for idx in skf.split(np.zeros(len(labels)), labels):
idx_list.append(idx)
train_idx, test_idx = idx_list[fold_idx]
return {
"train": torch.tensor(train_idx),
"val": torch.tensor(test_idx),
"test": torch.tensor(test_idx),
}
def set_alchemy_mean_std(self, mean, std):
self.mean = mean
self.std = std
def get_data(
dataset_name: str,
dataroot: Path,
split: int = 0,
) -> Tuple[InMemoryDataset, InMemoryDataset, InMemoryDataset]:
if dataset_name == "graphcount":
dataset = GraphCountDataset(dataroot, dataset_name)
dataset.data.y = dataset.data.y[:, split : split + 1]
split_idx = dataset.separate_data()
train_dataset, val_dataset, test_dataset = (
dataset[split_idx["train"]],
dataset[split_idx["val"]],
dataset[split_idx["test"]],
)
elif dataset_name == "ZINC":
train_dataset = ZINC(dataroot / dataset_name, subset=True, split="train")
val_dataset = ZINC(dataroot / dataset_name, subset=True, split="val")
test_dataset = ZINC(dataroot / dataset_name, subset=True, split="test")
elif "ogbg" in dataset_name:
dataset = PygGraphPropPredDataset(root=dataroot, name=dataset_name)
split_idx = dataset.get_idx_split()
train_dataset, val_dataset, test_dataset = (
dataset[split_idx["train"]],
dataset[split_idx["valid"]],
dataset[split_idx["test"]],
)
elif dataset_name == "REDDIT-BINARY":
dataset = TUDataset(root=dataroot, name=dataset_name, transform=Constant())
split_idx = dataset.separate_data(seed=42, fold_idx=split)
train_dataset, val_dataset, test_dataset = (
dataset[split_idx["train"]],
dataset[split_idx["val"]],
dataset[split_idx["test"]],
)
elif dataset_name == "alchemy_full":
def f(i):
return pd.read_csv(i, header=None).to_numpy().squeeze(0)
indices = np.concatenate(
list(
map(
f,
[
"data/alchemy_indices/train_al_10.index",
"data/alchemy_indices/val_al_10.index",
"data/alchemy_indices/test_al_10.index",
],
)
)
)
dataset = TUDataset(root=dataroot, name="alchemy_full")[indices]
# Normalize as in SignNet
mean = dataset.data.y.mean(dim=0, keepdim=True)
std = dataset.data.y.std(dim=0, keepdim=True)
dataset.data.y = (dataset.data.y - mean) / std
dataset.set_alchemy_mean_std(mean, std)
train_dataset, val_dataset, test_dataset = (
dataset[:10_000],
dataset[10_000:11_000],
dataset[11_000:12_000],
)
else:
raise ValueError(f"dataset {dataset_name} not supported")
return train_dataset, val_dataset, test_dataset