-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathScoreFeaturesAcrossRuns.py
47 lines (42 loc) · 1.42 KB
/
ScoreFeaturesAcrossRuns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
# * * (10.1) This function compute discrimination score of 5 discriminative features from all leave one out iteration steps.
#They are scored by their disrimination rankings and number of repetitions.
def Score_features(ind_array):
Cf=[]
Cf_sub=[]
Score_list=[]
Score_list1=[]
Score_index=[]
Score=0
ind_array=ind_array.transpose()
ind_array1=np.concatenate(ind_array)
ind_array2=np.unique(ind_array1)
for i in range(len(ind_array2)):
for j in range(ind_array.shape[0]):
for k in range(ind_array.shape[1]):
if ind_array2[i]==ind_array[j][k]:
Cf_sub.append([j, k])
Cf.append(Cf_sub)
Cf_sub=[]
for i in range(len(Cf)):
for j in range(len(Cf[i])):
Score+=5-Cf[i][j][0]
Score_list.append(Score)
Score_list1.append(Score)
Score=0
Score_list1.sort()
Score_list1=Score_list1[::-1]
con11=True
for i in range(5):
for j in range(len(Score_list)):
if con11:
if Score_list1[i]==Score_list[j]:
if not ind_array2[j] in Score_index:
Score_index.append(ind_array2[j])
con11=False
else:
j+=1
con11=True
Score_index=np.unique(Score_index)
#* *
return Score_index