-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_trainer.py
executable file
·440 lines (350 loc) · 15.5 KB
/
main_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import argparse
import pickle
import scipy
from torch.autograd import Variable
import sklearn.metrics as metrics
from sklearn.metrics import confusion_matrix
from sklearn import preprocessing
import cross_val
import models_diffpool as model_diffpool
from models_gcn import GCN
from models_gunet import GNet
from models_gat import GAT
import gGAN
import time
import random
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib import mlab
from os import path
from utils.plot import plot_matrix
# random seed
manualSeed = 0
np.random.seed(manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
if torch.cuda.is_available():
device = torch.device('cuda')
# if you are using GPU
torch.cuda.manual_seed(manualSeed)
torch.cuda.manual_seed_all(manualSeed)
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
else:
device = torch.device("cpu")
def evaluate(dataset, CBT, model, generator, discriminator, args, fold, epoch):
"""
Parameters
----------
dataset : dataloader (dataloader for the validation/test dataset).
model : nn model (diffpool, gat, gunet or gcn).
args : arguments
threshold_value : float (threshold for adjacency matrices).
Description
----------
This methods performs the evaluation of the model on test/validation dataset
Returns
-------
test accuracy.
"""
model.eval()
labels = []
preds = []
generator.eval()
discriminator.eval()
target_data = np.reshape(CBT, (1, args.nbr_of_regions, args.nbr_of_regions, 1))
target_data = torch.from_numpy(target_data) # convert numpy array to torch tensor
target_data = target_data.type(torch.FloatTensor)
train_casted_target = [d.to(device) for d in gGAN.cast_data(target_data, 0)]
# Loss function
adversarial_loss = torch.nn.BCELoss()
l1_loss = torch.nn.L1Loss()
adversarial_loss.to(device)
l1_loss.to(device)
for batch_idx, data in enumerate(dataset):
adj = Variable(data['adj'].float(), requires_grad=False).to(device)
test_casted_source = [d.to(device) for d in gGAN.cast_data(adj, 0)]
registered_test_output = gGAN.register(args, generator, discriminator, adversarial_loss, l1_loss,
test_casted_source, train_casted_target, 1)
if epoch == args.num_epochs - 1:
plot_matrix(adj[0], args.model, batch_idx, fold)
plot_matrix(registered_test_output[0], "registered_" + args.model, batch_idx, fold)
adj = registered_test_output[0]
labels.append(data['label'].long().numpy())
batch_num_nodes = np.array([adj.shape[1]])
assign_input = np.identity(adj.shape[1])
assign_input = Variable(torch.from_numpy(assign_input).float(), requires_grad=False)
if args.threshold == "median":
threshold_value = torch.median(adj.detach())
adj = torch.where(adj > threshold_value, torch.tensor([1.0]), torch.tensor([0.0]))
if args.threshold == "mean":
threshold_value = torch.mean(adj.detach())
adj = torch.where(adj > threshold_value, torch.tensor([1.0]), torch.tensor([0.0]))
if args.model == "DIFFPOOL":
assign_input = torch.unsqueeze(assign_input, 0)
ypred = model(assign_input, adj, batch_num_nodes, assign_x=assign_input)
elif args.model == "GCN":
adj = torch.squeeze(adj)
ypred = model(assign_input, adj)
elif args.model == "GUNET":
adj = torch.squeeze(adj)
ypred = model([adj], [assign_input])
elif args.model == "GAT":
ypred = model(assign_input, adj)
_, indices = torch.max(ypred, 1)
preds.append(indices.cpu().data.numpy())
labels = np.hstack(labels)
preds = np.hstack(preds)
result = {'prec': metrics.precision_score(labels, preds, average='macro'),
'recall': metrics.recall_score(labels, preds, average='macro'),
'acc': metrics.accuracy_score(labels, preds),
'F1': metrics.f1_score(labels, preds, average="micro")}
print("Test accuracy:", result['acc'])
return result['acc']
def minmax_sc(x):
min_max_scaler = preprocessing.MinMaxScaler()
x = min_max_scaler.fit_transform(x)
return x
def train(args, train_dataset, val_dataset, for_cbt, model, fold):
"""
Parameters
----------
args : arguments
train_dataset : dataloader (dataloader for the train dataset).
val_dataset : dataloader (dataloader for the validation/test dataset).
model : nn model (diffpool, gat, gunet, gcn).
Description
----------
This methods performs the training of the model on train dataset and calls evaluate() method for evaluation.
Returns
-------
test accuracy.
"""
# -------------------------- #
# Registrator
# -------------------------- #
# Loss function
adversarial_loss = torch.nn.BCELoss()
l1_loss = torch.nn.L1Loss()
# loss coefficient
lam = 40
# set number of regions for gGAN functions
gGAN.set_num_regions(args.nbr_of_regions)
# acquire CBT using netNorm
cbt_set_np = np.array([d['adj'] for d in for_cbt])
CBT = gGAN.netNorm(cbt_set_np, cbt_set_np.shape[0])
# target data (CBT) to torch Float Tensor format
target_data = np.reshape(CBT, (1, args.nbr_of_regions, args.nbr_of_regions, 1))
target_data = torch.from_numpy(target_data) # convert numpy array to torch tensor
target_data = target_data.type(torch.FloatTensor)
# Initialize generator and discriminator
generator = gGAN.Generator()
discriminator = gGAN.Discriminator()
generator.to(device)
discriminator.to(device)
adversarial_loss.to(device)
l1_loss.to(device)
# Optimizers
optimizer_G = torch.optim.AdamW(generator.parameters(), lr=args.lr_G, betas=(0.5, 0.999)) # 0.0001
optimizer_D = torch.optim.AdamW(discriminator.parameters(), lr=args.lr_D, betas=(0.5, 0.999)) # 0.001
train_casted_target = [d.to(device) for d in gGAN.cast_data(target_data, 0)]
# --------------------------- #
# classifier
# --------------------------- #
model.to(device)
params = list(model.parameters())
optimizer = torch.optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay)
test_accs = []
total_losses = []
plot_loss_g = np.empty((args.num_epochs))
plot_loss_d = np.empty((args.num_epochs))
for epoch in range(args.num_epochs):
print("Epoch ", epoch)
model.train()
generator.train()
discriminator.train()
total_time = 0
avg_loss = 0.0
preds = []
labels = []
losses_discriminator = []
losses_generator = []
for batch_idx, data in enumerate(train_dataset):
begin_time = time.time()
adj = Variable(data['adj'].float(), requires_grad=False).to(device)
train_casted_source = [d.to(device) for d in gGAN.cast_data(adj, 0)]
loss_generator, loss_discriminator, registered_train_output = gGAN.register(args, generator,
discriminator,
adversarial_loss, l1_loss,
train_casted_source,
train_casted_target, 0)
adj = registered_train_output[0]
label = Variable(data['label'].long()).to(device)
batch_num_nodes = np.array([adj.shape[1]])
assign_input = np.identity(adj.shape[1])
assign_input = Variable(torch.from_numpy(assign_input).float(), requires_grad=False).to(device)
if args.threshold == "median":
threshold_value = torch.median(adj.detach())
adj = torch.where(adj > threshold_value, torch.tensor([1.0]), torch.tensor([0.0]))
if args.threshold == "mean":
threshold_value = torch.mean(adj.detach())
adj = torch.where(adj > threshold_value, torch.tensor([1.0]), torch.tensor([0.0]))
if args.model == "DIFFPOOL":
assign_input = torch.unsqueeze(assign_input, 0)
ypred = model(assign_input, adj, batch_num_nodes, assign_x=assign_input)
elif args.model == "GCN":
adj = torch.squeeze(adj)
ypred = model(assign_input, adj)
elif args.model == "GUNET":
adj = torch.squeeze(adj)
ypred = model([adj], [assign_input])
elif args.model == "GAT":
ypred = model(assign_input, adj)
_, indices = torch.max(ypred, 1)
preds.append(indices.cpu().data.numpy())
labels.append(data['label'].long().numpy())
loss = model.loss(ypred, label)
avg_loss += loss
losses_generator.append(loss_generator)
losses_discriminator.append(loss_discriminator)
optimizer.zero_grad()
optimizer_G.zero_grad()
total_loss = lam * loss + loss_generator
total_loss.backward(retain_graph=True)
optimizer_G.step()
optimizer.step()
optimizer_D.zero_grad()
loss_discriminator.backward(retain_graph=True)
optimizer_D.step()
elapsed = time.time() - begin_time
total_time += elapsed
avg_g = torch.mean(torch.stack(losses_generator))
avg_d = torch.mean(torch.stack(losses_discriminator))
torch.save(generator.state_dict(), "./weights/" + args.model + "_" + args.dataset + "_" + str(fold) + "generator.model")
torch.save(discriminator.state_dict(), "./weights/" + args.model + "_" + args.dataset + "_" + str(fold) + "discriminator.model")
torch.save(model.state_dict(), "./weights/" + args.model + "_" + args.dataset + "_" + str(fold) + ".model")
print(
"[Epoch %d/%d] [D loss: %f] [G loss: %f] [total loss: %f]"
% (epoch, args.num_epochs, avg_d, avg_g, avg_loss))
plot_loss_g[epoch] = avg_g
plot_loss_d[epoch] = avg_d
count = avg_g
elapsed = time.time() - begin_time
total_time += elapsed
total_losses.append(avg_loss.detach().numpy())
preds = np.hstack(preds)
labels = np.hstack(labels)
print("Train accuracy : ", np.mean(preds == labels))
test_acc = evaluate(val_dataset, CBT, model, generator, discriminator, args, fold, epoch)
print('Avg classification loss: ', avg_loss.detach().numpy() / len(train_dataset), '; epoch time: ', total_time)
return test_acc, total_losses
def load_data():
"""
Description
----------
This methods loads the adjacency matrices of brain graphs
Returns
-------
List of dictionaries{adj, label, id}
"""
graphs_0 = np.load("./data/multivariate_simulation_data_0.npy")
graphs_1 = np.load("./data/multivariate_simulation_data_1.npy")
graphs = np.concatenate((graphs_0, graphs_1), axis=0)
labels = np.zeros((len(graphs)))
labels[len(graphs_0):] = 1
# Create List of Dictionaries
G_list = []
for i in range(len(labels)):
G_element = {"adj": graphs[i], "label": labels[i], "id": i, }
G_list.append(G_element)
return G_list
def train_and_evaluate(args):
"""
Parameters
----------
args : Arguments
Description
----------
Initiates the model and performs train/test or train/validation splits and calls train() to execute training and evaluation.
Returns
-------
test_accs : test accuracies (list)
"""
test_accs = []
# load data split it into for_cbt and folds
G_list = load_data()
random.shuffle(G_list) # shuffle for cbt data
num_nodes = G_list[0]['adj'].shape[0]
folds = cross_val.stratify_splits(G_list[0:int(round(len(G_list) * 0.8))], args) # [0:int(round(len(G_list) * 0.8))]
for_cbt = G_list[int(round(len(G_list) * 0.8)): len(G_list)]
[random.shuffle(folds[i]) for i in range(len(folds))]
for i in range(0, args.cv_number):
train_set, validation_set, test_set = cross_val.datasets_splits(folds, args, i)
train_dataset, val_dataset = cross_val.model_assessment_split(train_set, validation_set,
test_set, args)
assign_input = num_nodes
input_dim = num_nodes
print("CV : ", i)
if args.model == "DIFFPOOL":
model = model_diffpool.SoftPoolingGcnEncoder(
num_nodes,
input_dim, args.hidden_dim, args.output_dim, args.num_classes, args.num_gc_layers,
args.hidden_dim, assign_ratio=args.assign_ratio, num_pooling=args.num_pool,
bn=args.bn, dropout=args.dropout, linkpred=args.linkpred, args=args,
assign_input_dim=assign_input)
elif args.model == "GAT":
model = GAT(nfeat=num_nodes,
nhid=args.hidden,
nclass=args.num_classes,
dropout=args.dropout,
nheads=args.nb_heads,
alpha=args.alpha)
elif args.model == "GUNET":
model = GNet(num_nodes, args.num_classes, args)
elif args.model == "GCN":
model = GCN(nfeat=num_nodes,
nhid=args.hidden,
nclass=args.num_classes,
dropout=args.dropout)
test_acc, total_losses = train(args, train_dataset, val_dataset, for_cbt, model, i)
plt.figure(i + 5)
indexes = np.arange(len(total_losses))
plt.plot(indexes, total_losses, 'r-')
plt.legend('Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
title = str(i) + "_" + args.model
plt.savefig(title + ".png")
# show
# plt.show()
plt.clf()
test_accs.append(test_acc)
cv_number = len(test_accs)
acc_std = np.std(test_accs)
test_accs.append(np.mean(test_accs))
test_accs = [round(test_accs[i] * 100, 2) for i in range(len(test_accs))]
x = np.arange(len(test_accs))
x_labels = ["fold " + str(i + 1) for i in range(cv_number)] + ["mean"]
stds = [0] * cv_number + [acc_std * 100]
plt.figure(cv_number)
ax = plt.subplot(111)
up = max(test_accs) * .10
ax.bar(x, test_accs, yerr=stds, align='center', color=(0.5, 0.1, 0.5, 0.6))
for xi, yi, l in zip(*[x, test_accs, list(map(str, test_accs))]):
ax.text(xi - len(l) * .05, yi - up, l)
ax.set_xticks(x)
ax.set_xticklabels(x_labels)
ax.tick_params(axis='x', which='major', labelsize=12)
plt.title('accs using training set level threshold')
plt.savefig("./plots/acc_" + args.model + ".png")
plt.clf()
return test_accs
def test_scores(args):
test_accs = train_and_evaluate(args)
print("test accuracies ", test_accs)
return test_accs