-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfragsys_main.py
463 lines (374 loc) · 21.7 KB
/
fragsys_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
### this file contains the main fragsys function ###
from fragsys import *
### FRAGSYS ###
import pickle
def dump_pickle(data, f_out):
"""
dumps pickle
"""
with open(f_out, "wb") as f:
pickle.dump(data, f)
def load_pickle(f_in):
"""
loads pickle
"""
with open(f_in, "rb") as f:
data = pickle.load(f)
return data
def main(main_dir, prot, input_df):
"""
This is the main fragsys function. It carries
out a series of calculations and operations for
a protein given an input pandas dataframe and saves
all results to a subdirectory of the main directory
"""
### DIRECTORIES SETUP ###
wd = os.path.join(main_dir, prot)
unsupp_cifs_dir = os.path.join(wd, "unsupp_cifs")
unsupp_pdbs_dir = os.path.join(wd, "unsupp_pdbs")
supp_pdbs_dir = os.path.join(wd, "supp_pdbs")
clean_pdbs_dir = os.path.join(wd, "clean_pdbs")
stamp_out_dir = os.path.join(wd, "stamp_out")
results_dir = os.path.join(wd, "results")
sifts_dir = os.path.join(results_dir, "sifts")
dssp_dir = os.path.join(results_dir, "dssp")
pdb_clean_dir = os.path.join(results_dir, "pdb_clean")
arpeggio_dir = os.path.join(results_dir, "arpeggio")
varalign_dir = os.path.join(results_dir, "varalign")
figs_dir = os.path.join(results_dir, "figs")
dirs = [
unsupp_cifs_dir, unsupp_pdbs_dir, supp_pdbs_dir,
clean_pdbs_dir, stamp_out_dir, results_dir, pdb_clean_dir,
arpeggio_dir, sifts_dir, dssp_dir, varalign_dir, figs_dir
]
setup_fragsys_start(main_dir, prot, input_df)
setup_dirs(dirs)
classify_pdbs(prot, main_dir)
### CONVERSION TO PDB AND STAMPING PROCESS ###
subdirs = list(map(str, sorted([int(el) for el in os.listdir(unsupp_cifs_dir)])))
sp = get_swissprot()
cache_dir = os.path.join(os.getcwd(), ".varalign")
if not os.path.isdir(cache_dir):
os.mkdir(cache_dir)
cfg.dssp_bin = dssp_bin
aln_fmt = "stockholm"
for direc in dirs[1:]:
if direc == results_dir:
continue
for subdir in subdirs:
try:
os.mkdir(os.path.join(direc, subdir))
except:
pass #directory exists
for subdir in subdirs:
print("Starting to process group {} of {} in {}".format(subdir, subdirs, prot))
unsupp_pdbs_subdir = os.path.join(unsupp_pdbs_dir, subdir)
unsupp_cifs_subdir = os.path.join(unsupp_cifs_dir, subdir)
supp_pdbs_subdir = os.path.join(supp_pdbs_dir, subdir)
stamp_out_subdir = os.path.join(stamp_out_dir, subdir)
clean_pdbs_subdir = os.path.join(clean_pdbs_dir, subdir)
arpeggio_subdir = os.path.join(arpeggio_dir, subdir)
dssp_subdir = os.path.join(dssp_dir, subdir)
sifts_subdir = os.path.join(sifts_dir, subdir)
varalign_subdir = os.path.join(varalign_dir, subdir)
figs_subdir = os.path.join(figs_dir, subdir)
print("Starting CIF to PDB conversion section!")
subdir_cifs = os.listdir(unsupp_cifs_subdir)
cif2pdb_chain_dict = {}
bio2asym_chain_dict = {}
for cif in subdir_cifs:
cif_in = os.path.join(unsupp_cifs_subdir, cif)
pdb_out = os.path.join(unsupp_pdbs_subdir, cif[:-3] + "pdb")
if os.path.isfile(pdb_out):
pass
else:
id_equiv_dict = cif2pdb(cif_in, pdb_out) # only generated if files do not exist
cif2pdb_chain_dict[cif[:4]] = id_equiv_dict
bio2asym_chain_dict[cif[:4]] = get_chain_dict(cif_in)
asym_dict_out = os.path.join(results_dir, "cif2pdb_dict_{}_{}.pkl".format(prot, str(subdir)))
cif2pdb_out = os.path.join(results_dir, "bio2asym_dict_{}_{}.pkl".format(prot, str(subdir)))
if not os.path.isfile(asym_dict_out) and not os.path.isfile(cif2pdb_out):
try:
dump_pickle(cif2pdb_chain_dict, asym_dict_out)
dump_pickle(bio2asym_chain_dict, cif2pdb_out)
except:
print("Sorry. could not save dicts. Continue!")
else:
cif2pdb_chain_dict = load_pickle(cif2pdb_out)
bio2asym_chain_dict = load_pickle(asym_dict_out)
print("Starting STAMP section!")
domains_out = os.path.join(wd, "{}_{}_stamp.domains".format(prot, subdir))
if os.path.isfile(domains_out):
pass
else:
generate_domains(unsupp_pdbs_subdir, domains_out)
prefix = "{}_{}_stamp".format(prot, subdir)
n_strucs = len(os.listdir(unsupp_pdbs_subdir))
matrix_file = prefix + "." + str(n_strucs-1)
if os.path.isfile(os.path.join(stamp_out_dir, subdir, matrix_file)):
pass
else:
ec = stamp(
domains_out,
prefix, os.path.join(wd, prefix + ".out")
)
if ec == 0:
pass
else:
print("Something went wrong with STAMP :(")
structure_files = os.listdir(unsupp_pdbs_subdir)
c = 0
for file in structure_files:
if os.path.isfile(os.path.join(supp_pdbs_dir, subdir, file)): # only when they alaready have been transformed
c += 1
if c == len(structure_files):
pass
else:
print("Proceeding to run TRANSFORM")
if not os.path.isfile(matrix_file): # RUNNING TRANSFORM ONCE STAMP OUTPUT HAS BEEN MOVED TO STAMP_OUT_DIR
matrix_file = os.path.join(stamp_out_dir, subdir, prefix + "." + str(n_strucs-1))
ec = transform(matrix_file) #running transform with matrix on cwd
if ec == 0:
pass
else:
print("Something went wrong with TRANSFORM :(")
move_supp_files(unsupp_pdbs_subdir, supp_pdbs_subdir)
move_stamp_output(wd, prefix, stamp_out_subdir)
### PROCESSING OF STRUCTURES BEFORE PIPELINE ###
lig_data_path = os.path.join(wd, "{}_{}_lig_data.csv".format(prot, subdir))
if os.path.isfile(lig_data_path):
ligs_df = pd.read_csv(lig_data_path)
else:
ligs_df = get_lig_data(supp_pdbs_subdir, lig_data_path)
### PDB - UNIPROT SEQUENCE MAPPING ###
print("Starting UNIPROT-PDB mapping section!")
pdb_mappings = []
strucs = [file for file in os.listdir(unsupp_pdbs_subdir) if file.endswith("_bio.pdb")]
for struc in strucs:
pdb_id = struc[:4]
dssp_csv = os.path.join(dssp_subdir, "dssp_" + struc.replace("pdb", "csv"))
if os.path.isfile(dssp_csv):
dssp_data = pd.read_csv(dssp_csv)
pass
else:
dssp_data = run_dssp(struc, supp_pdbs_subdir, dssp_subdir)
input_sifts = os.path.join(cfg.db_root, cfg.db_sifts, "{}.xml".format(pdb_id))
input_sifts_moved = os.path.join(sifts_subdir, "{}.xml".format(pdb_id))
if os.path.isfile(input_sifts_moved):
pass
else:
try:
download_sifts_from_ebi(pdb_id)
except:
print("ERROR: SIFTS not found for {}!".format(pdb_id))
continue
sifts_out1 = os.path.join(sifts_subdir, "sifts_" + pdb_id + ".csv")
sifts_out2 = os.path.join(sifts_subdir, "sifts_mapping_" + pdb_id + ".csv")
if os.path.isfile(sifts_out1) and os.path.isfile(sifts_out2):
sifts_data = pd.read_csv(sifts_out1)
sifts_mapping = pd.read_csv(sifts_out2)
else:
sifts_data, sifts_mapping = process_sifts_data(input_sifts, sifts_subdir, pdb_id)
print("SIFTS output being processed for {}!".format(pdb_id))
mapping = pd.merge(sifts_mapping, dssp_data, left_on = "PDB_ResNum", right_on = "PDB_ResNum")
pdb_mappings.append(mapping)
### ARPEGGIO PART ###
print("Starting ARPEGGIO section!")
struc2ligs = {}
for struc in strucs:
struc2ligs[struc] = []
struc_df = ligs_df[ligs_df.struc_name == struc]
pdb_path = os.path.join(supp_pdbs_subdir, struc)
clean_pdb_path = pdb_path.replace(".pdb", ".clean.pdb")
if os.path.isfile(os.path.join(clean_pdbs_subdir, struc.replace(".pdb", ".clean.pdb"))) or os.path.isfile(os.path.join(supp_pdbs_subdir, struc.replace(".pdb", ".clean.pdb"))):
pass
else:
ec = run_clean_pdb(pdb_path)
if ec == 0:
pass
else:
print("Something went wrong when cleaning {} :(".format(struc[:4]))
pass
ligs = struc_df.label_comp_id.unique().tolist()
for the_lig in ligs: # RUNs ARPEGGIO ONCE FOR EACH LIGAND
struc2ligs[struc].append(the_lig)
if not os.path.isfile(clean_pdb_path):
clean_pdb_path = os.path.join(clean_pdbs_subdir, struc.replace(".pdb", ".clean.pdb"))
if os.path.isfile(os.path.join(arpeggio_subdir, struc[:-3] + "clean_{}.bs_contacts".format(the_lig))) or os.path.isfile(os.path.join(supp_pdbs_subdir, struc[:-3] + "clean_{}.bs_contacts".format(the_lig))):
continue
ec = run_arpeggio(clean_pdb_path, the_lig)
if ec == 0:
print("Arpeggio ran sucessfully for {} in {}!".format(the_lig, struc[:4]))
for arpeggio_suff in arpeggio_suffixes: # CHANGES ARPEGGIO OUTPUT FILENAMES SO THEY INCLUDE LIGAND NAME
arpeggio_file_old_name_supp = os.path.join(supp_pdbs_subdir, struc[:-3] + "clean" + "." + arpeggio_suff)
arpeggio_file_new_name_supp = os.path.join(supp_pdbs_subdir, struc[:-3] + "clean_{}".format(the_lig) + "." + arpeggio_suff)
arpeggio_file_old_name_clean = os.path.join(clean_pdbs_subdir, struc[:-3] + "clean" + "." + arpeggio_suff)
arpeggio_file_new_name_clean = os.path.join(clean_pdbs_subdir, struc[:-3] + "clean_{}".format(the_lig) + "." + arpeggio_suff)
if os.path.isfile(arpeggio_file_old_name_supp):
os.rename(arpeggio_file_old_name_supp, arpeggio_file_new_name_supp)
elif os.path.isfile(arpeggio_file_old_name_clean):
os.rename(arpeggio_file_old_name_clean, arpeggio_file_new_name_clean)
else:
print("Something went wrong when running Arpeggio for {} :(".format(struc[:4]))
pass
move_arpeggio_output(wd, subdir, strucs, supp_pdbs_subdir, clean_pdbs_subdir, struc2ligs)
ligand_contact_list = []
for struc in strucs:
all_ligs = ligs_df[ligs_df.struc_name == struc].label_comp_id.unique().tolist()
arpeggio_out1 = os.path.join(arpeggio_subdir, "arpeggio_all_cons_split_" + struc[:4] + ".csv") # output file 1
arpeggio_out2 = os.path.join(arpeggio_subdir, "arpeggio_lig_cons_" + struc[:4] + ".csv") # output file 2
if os.path.isfile(arpeggio_out1) and os.path.isfile(arpeggio_out2):
lig_cons_split = pd.read_csv(arpeggio_out1)
arpeggio_lig_cons = pd.read_csv(arpeggio_out2)
else:
if len(all_ligs) == 0:
print("No LOIs in {}, so skipping!".format(struc[:4]))
continue
else:
try:
lig_cons_split, arpeggio_lig_cons = process_arpeggio(struc, all_ligs, clean_pdbs_subdir, arpeggio_subdir, sifts_subdir, bio2asym_chain_dict[struc[:4]], cif2pdb_chain_dict[struc[:4]]) ### NOW PROCESSES ALL LIGANDS ###
print("Arpeggio output being processed for {}!".format(struc[:4]))
except:
print("Arpeggio processing failed for {}".format(struc))
continue
ligand_contact = arpeggio_lig_cons["PDB_ResNum"].astype(str)
ligand_contact_list.append(ligand_contact)
### BINDING SITE DEFINITION AND CHIMERA SCRIPT WRITING ###
print("Starting BS definition section!")
pdb_paths = [os.path.join(clean_pdbs_subdir, file) for file in os.listdir(clean_pdbs_subdir)]
ligs = ligs_df.label_comp_id.unique().tolist()
string_name = "{}_{}_BS_def_OC_{}_{}_{}".format(prot, subdir, oc_method, oc_metric, oc_dist)
bs_def_out = os.path.join(results_dir, "{}.csv".format(string_name))
attr_out = os.path.join(results_dir, "{}.attr".format(string_name))
chimera_script_out = os.path.join(results_dir, "{}.com".format(string_name))
if os.path.isfile(bs_def_out) and os.path.isfile(attr_out) and os.path.isfile(chimera_script_out):
pass
else:
def_bs_oc(results_dir, pdb_paths, prot, subdir, ligs, bs_def_out, attr_out, chimera_script_out, arpeggio_subdir, metric = oc_metric, dist = oc_dist, method = oc_method, alt_fmt = False)
print("Binding sites were sucessfully defined!")
bs_definition = pd.read_csv(bs_def_out)
### CONSERVATION AND VARIATION ANALYSIS
example_struc = os.path.join(clean_pdbs_subdir, os.listdir(clean_pdbs_subdir)[0])
fasta_path = os.path.join(varalign_subdir, "{}_{}.fa".format(prot, subdir))
hits_aln = fasta_path.replace("fa", "sto")
hits_aln_rf = fasta_path.replace(".fa", "_rf.sto")
shenkin_out = os.path.join(varalign_subdir, "{}_{}_shenkin.csv".format(prot, subdir))
shenkin_filt_out = os.path.join(varalign_subdir, "{}_{}_shenkin_filt.csv".format(prot, subdir))
if os.path.isfile(hits_aln_rf):
pass
else:
create_alignment_from_struc(example_struc, fasta_path)
print("jackhmmer was generated correctly!")
### conservation calculation ###
prot_cols = get_target_prot_cols(hits_aln)
if os.path.isfile(shenkin_out):
shenkin = pd.read_csv(shenkin_out)
else:
shenkin = calculate_shenkin(hits_aln_rf, aln_fmt, shenkin_out)
print("Shenkin dataframe was created and saved correctly!")
if os.path.isfile(shenkin_filt_out):
shenkin_filt = pd.read_csv(shenkin_filt_out)
else:
shenkin_filt = get_and_format_shenkin(shenkin, prot_cols, shenkin_filt_out)
print("Shenkin dataframe was filtered and saved correctly!")
aln_obj = Bio.AlignIO.read(hits_aln_rf, "stockholm") #crashes if target protein is not human!
aln_info_path = os.path.join(varalign_subdir, hits_aln_rf + "_info_table.p.gz")
if os.path.isfile(aln_info_path):
aln_info = pd.read_pickle(aln_info_path)
else:
aln_info = varalign.alignments.alignment_info_table(aln_obj)
aln_info.to_pickle(aln_info_path)
print("Aln info was correctly created and saved!")
print("There are {} sequences in MSA".format(len(aln_info)))
indexed_mapping_path = os.path.join(varalign_subdir, hits_aln_rf + '_mappings.p.gz')
if os.path.isfile(indexed_mapping_path):
indexed_mapping_table = pd.read_pickle(indexed_mapping_path)
else:
indexed_mapping_table = varalign.align_variants._mapping_table(aln_info) # now contains all species
indexed_mapping_table.to_pickle(indexed_mapping_path) # important for merging later on
print("Mapping table was created and saved correctly!")
### variation pipeline
aln_info_human = aln_info[aln_info.species == "HUMAN"]
if len(aln_info_human) > 0:
print("There are {} HUMAN sequences in the MSA".format(len(aln_info_human)))
human_hits_msa = os.path.join(hits_aln_rf[:-4] + "_human.sto")
if os.path.isfile(human_hits_msa):
pass
else:
get_human_subset_msa(hits_aln_rf, human_hits_msa)
print("Human subset MSA generated correctly!")
variant_table_path = os.path.join(varalign_subdir, human_hits_msa + "_human_variants.p.gz")
if os.path.isfile(variant_table_path):
variants_table = pd.read_pickle(variant_table_path)
else:
variants_table = varalign.align_variants.align_variants(aln_info_human, path_to_vcf = gnomad_vcf, include_other_info = False)
variants_table.to_pickle(variant_table_path)
print("Variant table was created and saved correctly!")
human_miss_vars = format_variant_table(variants_table, prot_cols) # GET ONLY MISSENSE VARIANTS ROWS
human_miss_vars_msa_out = os.path.join(varalign_subdir, hits_aln_rf[:-4] + "_human_missense_variants_seqs.sto")
miss_df_out = os.path.join(varalign_subdir, "{}_{}_missense_df.csv".format(prot, subdir))
if os.path.isfile(miss_df_out):
missense_variants_df = pd.read_csv(miss_df_out)
else:
missense_variants_df = get_missense_df(
hits_aln_rf, aln_fmt, human_miss_vars,
shenkin_filt, prot_cols, human_miss_vars_msa_out
)
missense_variants_df = add_miss_class(
missense_variants_df, miss_df_out,
cons_col = "rel_norm_shenkin", thresholds = [25, 75]
)
print("Missense dataframe was created and saved correctly!")
shenkin_filt["human_shenkin"] = missense_variants_df.shenkin
shenkin_filt["human_occ"] = missense_variants_df.occ
shenkin_filt["human_gaps"] = missense_variants_df.gaps
shenkin_filt["human_occ_pct"] = missense_variants_df.occ_pct
shenkin_filt["human_gaps_pct"] = missense_variants_df.gaps_pct
shenkin_filt["variants"] = missense_variants_df.variants
shenkin_filt["oddsratio"] = missense_variants_df.oddsratio
shenkin_filt["log_oddsratio"] = missense_variants_df.log_oddsratio
shenkin_filt["pvalue"] = missense_variants_df.pvalue
shenkin_filt["ci_dist"] = missense_variants_df.ci_dist
else:
print("No human sequences in MSA")
pass
aln_ids = list(set([seqid[0] for seqid in indexed_mapping_table.index.tolist() if "P0DTD1" in seqid[0]])) # THIS IS EMPTY IF QUERY SEQUENCE IS NOT FOUND
mapped_data = merge_shenkin_df_and_mapping(shenkin_filt, indexed_mapping_table, aln_ids) #does it need to be only human?
contact_variation_list = []
for pdb_mapping, ligand_contact in zip(pdb_mappings, ligand_contact_list):
mapped_data_pdb = mapped_data.merge(pdb_mapping, on = "UniProt_ResNum") # mapping conservation and variation data to pdb mapping for each structure
contact_variation = mapped_data_pdb[mapped_data_pdb["PDB_ResNum"].isin(ligand_contact)] # subsetting table for ligand-interacting residues
contact_variation = contact_variation.drop(axis = 1, labels = ["PDB_ChainID"])
contact_variation = contact_variation.drop_duplicates("UniProt_ResNum")
contact_variation["UniProt_ResNum"].astype(int)
contact_variation_list.append(contact_variation)
for structure, contact_variation in zip(strucs, contact_variation_list): # concatenate all strucutre tables
contact_variation['structure'] = structure[:4] # adding column indicating structure id
all_contact_variations = pd.concat(contact_variation_list) # concatenate all different structure tables ()
bs_ids = sorted(bs_definition.binding_site.unique().tolist()) #if not sorted, mapping of residues and binding sites has labeling mixed up
binding_site_res = get_bs_residues(bs_definition, sifts_subdir, arpeggio_subdir)
bs_sig_cols = get_bs_sig_cols(strucs, bs_ids, binding_site_res, all_contact_variations)
fragsys_df_path = os.path.join(results_dir, "{}_{}_fragsys_df.csv".format(prot, subdir))
if os.path.isfile(fragsys_df_path):
fragsys_df = pd.read_csv(fragsys_df_path)
else:
fragsys_df = add_bs_info2df(bs_sig_cols, all_contact_variations, fragsys_df_path)
print("Fragsys results dataframe was created and saved successfully!")
totals = get_totals(mapped_data, prot, sifts_subdir)
### BINDING SITE PLOTTING SECION ###
mes_sgc_df_out = os.path.join(results_dir, "{}_{}_BS_df.csv".format(prot, subdir))
if os.path.isfile(mes_sgc_df_out):
mes_sgc_df = pd.read_csv(mes_sgc_df_out)
else:
mes_sgc_df = create_binding_site_df([fragsys_df, totals, binding_site_res])
mes_sgc_df.to_csv(mes_sgc_df_out, index = False)
print("Binding site dataframe was created and saved successfully for {}_{}!".format(prot, subdir))
mes_sgc_df, bs_unique_res = add_bs_msa_coverage(mes_sgc_df, fragsys_df, binding_site_res)
df_prot_miss = pd.read_csv(miss_df_out)
df_prot_miss = df_prot_miss[df_prot_miss.occ > 0]
mes_sgc_df_filt = mes_sgc_df[(mes_sgc_df.vars != 0) & (mes_sgc_df.occ != 0) & (mes_sgc_df.shenkin_ci != 0)&(mes_sgc_df.number_bs_res > 1)] # filter df to get rid of sites with 0 variants and other anomalies
bs_ids = mes_sgc_df_filt.bs_id.unique().tolist()
get_overall_stats(wd, prot, subdir, lig_data_path, bs_ids, varalign_subdir, totals)
print("Fragsys has finished running for group {} of {}!".format(subdir, prot))
print("Fragsys has finished running for {}!".format(prot))
### THE END ###