Skip to content

Graduation Project for "基于深度学习的三维重建方法的研究".

License

Notifications You must be signed in to change notification settings

bansheng/3D-R2N2-pytorch

Repository files navigation

996.icu

Branch description

This branch contains codes of the PyTorch version of 3D-R2N2.

Citing this work

If you find this work useful in your research, please consider citing:

@inproceedings{choy20163d,
  title={3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction},
  author={Choy, Christopher B and Xu, Danfei and Gwak, JunYoung and Chen, Kevin and Savarese, Silvio},
  booktitle = {Proceedings of the European Conference on Computer Vision ({ECCV})},
  year={2016}
}

Project Page

The project page is available at http://cvgl.stanford.edu/3d-r2n2/.

Datasets

We used ShapeNet models to generate rendered images and voxelized models which are available below (you can follow the installation instruction below to extract it to the default directory).

  • ShapeNet rendered images ftp://cs.stanford.edu/cs/cvgl/ShapeNetRendering.tgz
  • ShapeNet voxelized models ftp://cs.stanford.edu/cs/cvgl/ShapeNetVox32.tgz
  • Trained ResidualGRUNet Weights ftp://cs.stanford.edu/cs/cvgl/ResidualGRUNet.npy

Installation原始版(论文github给的安装)

The package requires python3. You can follow the direction below to install virtual environment within the repository or install anaconda for python 3.

  • Download the repository
git clone https://github.com/chrischoy/3D-R2N2.git
  • Setup virtual environment and install requirements and copy the theanorc file to the $HOME directory
cd 3D-R2N2
conda create -n py-theano python=3.6
source activate py-theano
pip install -r requirements.txt
cp .theanorc ~/.theanorc

Installation实际版(我用学校的gpu时的安装)

学校装好了Nvidia driver和cuda

  • 查看gpu状态
nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.90                 Driver Version: 384.90                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 108...  Off  | 00000000:03:00.0 Off |                  N/A |
| 50%   83C    P2    89W / 250W |   1329MiB / 11172MiB |      1%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+
  • 查看cuda版本
nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2016 NVIDIA Corporation
Built on Tue_Jan_10_13:22:03_CST_2017
Cuda compilation tools, release 8.0, V8.0.61
cd <cudnnpath>

Install the runtime library

sudo dpkg -i libcudnn7_7.1.1.5-1+cuda8.0_amd64.deb

Install the developer library

sudo dpkg -i libcudnn7-dev_7.1.1.5-1+cuda8.0_amd64.deb

Install the code samples and the cuDNN Library User Guide

sudo dpkg -i libcudnn7-doc_7.1.1.5-1+cuda8.0_amd64.deb
  • Verify cudnn(和它网站上的一样)

http://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#verify

  • 安装anaconda
bash Anaconda3-5.1.0-Linux-x86_64.sh
  • 用conda安装libpygpu(theano gpu backend)

这个gpu backend好像是老的,新的是pygpu,在theano的conda-forge里装的有

conda install -c anaconda libgpuarray
  • 用conda安装theano
conda install -c conda-forge theano 
  • 用theano可能有的MKL2018 bug
RuntimeError: To use MKL 2018 with Theano you MUST set "MKL_THREADING_LAYER=GNU" in your environement.

把下面一行加到~/.bashrc中

export MKL_THREADING_LAYER=GNU

拷贝链接中的代码,并命名为testing_theano_with_gpu.py

THEANO_FLAGS='device=cuda0, floatX=float32, force_device=True, optimizer_including=cudnn' python3 testing_theano_with_gpu.py 

结果如下

Using cuDNN version 7101 on context None
Disabling allocation cache on cuda0
Mapped name None to device cuda0: GeForce GTX 1080 Ti (0000:03:00.0)
[GpuElemwise{exp,no_inplace}(<GpuArrayType<None>(float32, vector)>), HostFromGpu(gpuarray)(GpuElemwise{exp,no_inplace}.0)]
Looping 1000 times took 0.445036 seconds
Result is [1.2317803 1.6187935 1.5227807 ... 2.2077181 2.2996776 1.623233 ]
Used the gpu
  • 用pip安装easydict

anaconda有requirements.txt里要求的大部分库,除了easydict。但是用conda装easydict会和conda里的其他库冲突,所以用pip安装

pip install easydict
  • Thanks my GD

Running demo.py

  • Install meshlab (skip if you have another mesh viewer). If you skip this step, demo code will not visualize the final prediction.
sudo apt-get install meshlab
  • Run the demo code and save the final 3D reconstruction to a mesh file named prediction.obj
python demo.py prediction.obj

The demo code takes 3 images of the same chair and generates the following reconstruction.

Image 1 Image 2 Image 3 Reconstruction
  • Deactivate your environment when you are done
deactivate

Training the network

  • Activate the virtual environment before you run the experiments.
source py3/bin/activate
  • Download datasets and place them in a folder named ShapeNet
mkdir ShapeNet/
wget ftp://cs.stanford.edu/cs/cvgl/ShapeNetRendering.tgz
wget ftp://cs.stanford.edu/cs/cvgl/ShapeNetVox32.tgz
tar -xzf ShapeNetRendering.tgz -C ShapeNet/
tar -xzf ShapeNetVox32.tgz -C ShapeNet/
  • Train and test the network using the training shell script
./experiments/scripts/res_gru_net.sh

Note: The initial compilation might take awhile if you run the theano for the first time due to various compilations. The problem will not persist for the subsequent runs.

训练时可能会有的"gpu out of memory" bug

pygpu.gpuarray.GpuArrayException: Out of memory

解决方法(来自https://groups.google.com/d/msg/theano-users/kpfsem4tabA/bjOuVtCIAwAJ)

1.在~/.theanorc中设置

[gpuarray]
preallocate = -1

2.在所有processes spawn后再标注使用gpu

详见lib/train_net.py第70、71行和lib/test_net.py第45、46行

License

MIT License

About

Graduation Project for "基于深度学习的三维重建方法的研究".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published