-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvast_theory.Rmd
796 lines (480 loc) · 21.2 KB
/
vast_theory.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
---
title: "Introduction to spatio-temporal modelling for environment and ecology"
subtitle: "VAST theory"
date: "March 2024"
fontsize: 10pt
bibliography : ["ref.bib"]
csl : ices-journal-of-marine-science.csl
output:
beamer_presentation:
theme: "Boadilla"
colortheme: "default"
slide_level: 3
# template: mytemplate.tex
includes:
in_header: header-simple.tex
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(dplyr)
library(ggplot2)
library(mapdata)
library(sf)
# Map
mapBase <- map("worldHires", fill = T, plot = F)
mapBase <- st_as_sf(mapBase) %>% filter(ID %in% c("France","Spain","UK","Ireland"))
grid_projection <- "+proj=longlat +datum=WGS84"
```
# Introduction
\frametitle{Some illustrations}
\center
\includegraphics[width=1\textwidth]{images/simu1.png}
------------------------------------------------------------------------
\center
\includegraphics[width=1\textwidth]{images/simu2.png}
------------------------------------------------------------------------
```{r,include=F,fig.align='center'}
# EVHOE data
load("data/EVHOE_2008_2019.RData")
# Haul data
Haul_df <- Save_Datras$datras_HH.full %>%
dplyr::select(Year,long,lati,StNo,HaulNo,Depth)
# Extent of the EVHOE domain
xlims <- range(pretty(Haul_df$long))
ylims <- range(pretty(Haul_df$lati))
# Catch data
Catch_df <- Save_Datras$datras_sp.HL.full %>%
group_by(Year,long,lati,StNo,HaulNo,scientificname) %>%
dplyr::summarise(CatchWgt = CatCatchWgt,
TotNum = TotalNo)
# Join with haul data to add missing hauls to catch data
Catch_df_2 <- full_join(Catch_df,Haul_df) %>%
filter(scientificname == "Merluccius_merluccius")
Catch_df_2$CatchWgt[which(is.na(Catch_df_2$CatchWgt))] <- 0
# Plot
Evhoe_plot <- ggplot(Catch_df_2)+
geom_point(aes(x=long,y=lati,col=CatchWgt))+
scale_color_distiller(palette="Spectral",trans="log10")+
facet_wrap(.~Year)+
geom_sf(data=mapBase)+
coord_sf(xlim = xlims, ylim = ylims, expand = FALSE)+
theme_bw()+
theme(axis.text.x = element_text(angle = 90),
plot.title = element_text(hjust = 0.5,face = "bold",size=14),
panel.spacing.x = unit(4, "mm"))+
ggtitle("Merluccius merluccius (EVHOE)",subtitle=" ")+
ylab("")+xlab("")
```
```{r,warning=F,echo=F,fig.align='center',out.width="70%"}
plot(Evhoe_plot)
```
------------------------------------------------------------------------
\center
\includegraphics[width=0.6\linewidth]{"images/co2.png"}
------------------------------------------------------------------------
\frametitle{Data and ecological processes}
\vspace{\baselineskip}
What are the characteristics of these data?
\medskip
```{=tex}
\onslide<2-4>{
\begin{itemize}
\item They arise from the ecological process of interest (= they are \textbf{conditionnal} on the ecological process)
\item \textbf{Noisy} (= they are not perfect observations of the ecological process)
\item \textbf{Sparse} (= they do not cover the full area and some hypothesis need to be set to predict the ecological process between the sampled locations)
\end{itemize}
}
```
\vspace{\baselineskip}
What are the characteristics of the ecological process we want to infer?
```{=tex}
\onslide<3-4>{
\begin{itemize}
\item \textbf{Hidden} or \textbf{latent}
\item \textbf{Structured} (relations that structure the process?)
\end{itemize}
}
```
\vspace{\baselineskip}
How to relate the data to the ecological process?
\vspace{\baselineskip}
```{=tex}
\onslide<4>{
\begin{center}
\ding{224} \textbf{Hierarchical modeling}
\end{center}
}
```
------------------------------------------------------------------------
\frametitle{Hierarchical models}
```{=tex}
\begin{columns}
\begin{column}{0.4\textwidth}
Let's define observations $\textcolor{BaptisteLightGreen}{\boldsymbol{Y}}$:
$$\textcolor{BaptisteLightGreen}{\boldsymbol{Y}} | \textcolor{BaptisteBlue}{\boldsymbol{S}}, \textcolor{red}{\boldsymbol{\theta}} \sim \mathcal{L}_Y(\textcolor{BaptisteBlue}{\boldsymbol{S}},\textcolor{red}{\boldsymbol{\theta}_{obs}})$$
a latent field $\textcolor{BaptisteBlue}{\boldsymbol{S}}$:
$$\textcolor{BaptisteBlue}{\boldsymbol{S}} | \textcolor{red}{\boldsymbol{\theta}_{process}} \sim \mathcal{L}_S(\textcolor{red}{\boldsymbol{\theta}_{process}})$$
and parameters:
$$\textcolor{red}{\boldsymbol{\theta}} = (\textcolor{red}{\boldsymbol{\theta}_{obs}},\textcolor{red}{\boldsymbol{\theta}_{process}})$$
\vspace{\baselineskip}
\scriptsize
There can be several data sources $\textcolor{BaptisteLightGreen}{\boldsymbol{Y}_1}$ and $\textcolor{BaptisteLightGreen}{\boldsymbol{Y}_2}$, in which case each has its own probability distribution ($\mathcal{L}_{Y_1}$,$\mathcal{L}_{Y_2}$) and observation parameters ($\textcolor{red}{\boldsymbol{\theta}_{obs , 1}}$, $\textcolor{red}{\boldsymbol{\theta}_{obs , 2}}$).
\end{column}
\begin{column}{0.6\textwidth}
\center{\includegraphics[width=0.9\columnwidth]{images/dag_ssm.png}}
\end{column}
\end{columns}
```
------------------------------------------------------------------------
```{=tex}
\begin{center}
\ding{224} \textbf{How to specify such model for space-time applications?}
\end{center}
```
\medskip
\tableofcontents
\medskip
```{=tex}
\pause
\scriptsize
```
Based on the package \href{https://github.com/James-Thorson-NOAA/VAST}{VAST} (Vector Autoregressive Spatio-Temporal) coded by Jim Torson (NOAA, Seattle)
# Univariate spatio-temporal models
\scriptsize
Let's denote:
\medskip
```{=tex}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item $\boldsymbol{Y} = (Y_i, i \in \{1, \cdots , n\})$ the observation vector
\item $\boldsymbol{S} = (S_i, i \in \{1, \cdots , n\})$ the latent field vector
\item $\boldsymbol{\delta} = (\delta_i, i \in \{1, \cdots , n\})$ the latent variables
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item $\boldsymbol{\beta} = (\beta_j, j \in \{1, \cdots , p\})$ the parameter vector
\item $\boldsymbol{X} _ {( n \times p )}$ the covariate matrix
\item $f$ a link function.
\end{itemize}
\end{column}
\end{columns}
```
\normalsize
\bigskip \bigskip
$$Y | \boldsymbol{\delta}, \boldsymbol{\beta} \sim \mathcal{L}(\boldsymbol{S}, \sigma^2)$$
$$f(\boldsymbol{S}) = \boldsymbol{X} \cdot \boldsymbol{\beta} + \boldsymbol{\delta}$$
$$\boldsymbol{\delta} \sim \mathcal{MG}(0,\boldsymbol{\Sigma})$$
\bigskip
\center
The key element is the covariance matrix $\boldsymbol{\Sigma}_{(n \times n)}$
------------------------------------------------------------------------
\large
$$\boldsymbol{\Sigma} = \begin{pmatrix}
Var[\delta_1] & Cov[\delta_1,\delta_2] & \cdots & Cov[\delta_1,\delta_n] \\
Cov[\delta_2,\delta_1] & Var[\delta_2] & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
Cov[\delta_n,\delta_1] & \cdots & \cdots & Var[\delta_n] \\
\end{pmatrix}$$
\center
\medskip
\includegraphics[width=0.7\linewidth]{"images/domain.png"}
------------------------------------------------------------------------
\center
\ding{224} \textbf{The covariance is stationary (and isotropic)} \begin{align}
Cov[\delta_i,\delta_j] = Cov[h_{ij}] \text{ with } h_{ij} \in \mathbb{R} \nonumber \\
h_{ij} \text{ is the distance between i and j} \nonumber
\end{align}
\includegraphics[width=0.7\linewidth]{"images/altern_cov.png"}
\medskip
\small
We will denote $\delta_i$ as $\delta(x_i)$ in the following
------------------------------------------------------------------------
```{=tex}
\begin{center}
\includegraphics[width=0.7\textwidth]{images/lindgren1.png}
\includegraphics[width=0.7\textwidth]{images/lindgren2.png}
\end{center}
```
\tiny
Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(4), 423-498.
------------------------------------------------------------------------
\frametitle{Moving to spatio-temporal}
The ideas are similar, but we add temporal correlations in the expression of the random effect $\boldsymbol{\delta}$. \medskip
```{=tex}
\begin{center}
\includegraphics[width=0.9\linewidth]{"images/st_maps.png"}
\end{center}
```
\vspace{\baselineskip}
\scriptsize
Let's introduce the model:
$$\delta(x,t)=\varphi \cdot \delta(x,t-1) + \omega(x,t) \text{ for } t = 2,...,T$$
- $\varphi \in ]-1;1[$ is the autoregressive temporal term
- $\omega(x,t)$ is a purely spatial GRF
- $\omega(x,1)$ derives from the stationary distribution $\mathcal{N}(0,\sigma^2 / (1 - \varphi ^ 2))$
------------------------------------------------------------------------
```{=tex}
\begin{columns}
\begin{column}{0.65\textwidth}
\begin{center}
\includegraphics[width=0.9\textwidth]{images/seabass.png}
\scriptsize
Average monthly distribution of sea bass in the Bay of Biscay from 2008 to 2018
\end{center}
\end{column}
\begin{column}{0.35\textwidth}
\scriptsize
Alglave Baptiste, Olmos et al. (\textit{under review}). Investigating fish adult phenology through Empirical Orthogonal Functions
\end{column}
\end{columns}
```
------------------------------------------------------------------------
```{=tex}
\begin{columns}
\begin{column}{0.5\textwidth}
\includegraphics[width=1\textwidth]{images/thorson1.png}
\end{column}
\begin{column}{0.5\textwidth}
\scriptsize
Thorson, J. T., Shelton, A. O., Ward, E. J., and Skaug, H. J. (2015). Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES Journal of Marine Science, 72(5), 1297-1310.
\end{column}
\end{columns}
```
# Multivariate spatio-temporal models
\tableofcontents[currentsection]
------------------------------------------------------------------------
\frametitle{Multivariate modelling}
Often, spatial data are multivariate
\textit{e.g.} in survey data, several species are recorded in a single haul.
\quad \textbf{\ding{224} How to extract the common patterns between these species?}
```{r,include=F,fig.align='center'}
Catch_df_3 <- full_join(Catch_df,Haul_df) %>%
filter(scientificname %in% c("Merluccius_merluccius","Lepidorhombus_whiffiagonis","Micromesistius_poutassou","Trachurus_trachurus","Lophius_piscatorius","Lophius_budegassa"))
# Plot
Evhoe_multi_plot <- ggplot(Catch_df_3)+
geom_point(aes(x=long,y=lati,col=TotNum))+
scale_color_distiller(palette="Spectral",trans="log10")+
facet_wrap(.~scientificname)+
geom_sf(data=mapBase)+
coord_sf(xlim = xlims, ylim = ylims, expand = FALSE)+
theme_bw()+
theme(axis.text.x = element_text(angle = 90),
plot.title = element_text(hjust = 0.5,face = "bold",size=14),
panel.spacing.x = unit(4, "mm"))+
ggtitle("Some important species of the EVHOE survey")+
ylab("")+xlab("")
```
```{r,warning=F,echo=F,fig.align='center',out.width="65%"}
plot(Evhoe_multi_plot)
```
------------------------------------------------------------------------
\frametitle{How to model jointly these species?}
\large
Let's now denote $\boldsymbol{S}_{(n \times l)}$ the matrix of observations of species in $n$ locations for $l$ species.
$$\log(\boldsymbol{S}_{i,\cdot})=\boldsymbol{X} \cdot \boldsymbol{\beta} + \boldsymbol{L} \boldsymbol{\Delta}^T_{i,\cdot}$$
\bigskip
$\rightarrow \log(\boldsymbol{S}_{i,\cdot})$ is the log-expected densities for all species $l$ at locations $i \in \{1,\cdots, n\}$. \bigskip
$\rightarrow \boldsymbol{X} \cdot \boldsymbol{\beta}$ is the trend part. \bigskip
$\rightarrow \boldsymbol{L} \boldsymbol{\Delta}^T_{i,\cdot}$ is the part of the model that controls species (or variables) interaction.
\bigskip
\center
\ding{224} How is it parameterized?
------------------------------------------------------------------------
\frametitle{How to model jointly these species?}
$\boldsymbol{\Delta}_{(l \times k)}$ is the matrix containing the spatial factors. $\boldsymbol{L}_{(l,k)}$ contains the loading factors. \bigskip
\underline{\textbf{Latent variables ($\boldsymbol{\Delta}$):}} \medskip
$\boldsymbol{\Delta}^T_{i,\cdot}$ is the value of $\boldsymbol{\Delta}$ for all spatial factor $k$ at location $i$. $\Delta$ is a matrix where each column represents one of the spatial factor. Each latent variable $\boldsymbol{\delta}_j$ is parameterized as a GRF. \medskip
$$\boldsymbol{\Delta} = (\boldsymbol{\delta}_1,\boldsymbol{\delta}_2,\cdots,\boldsymbol{\delta}_k) \text{ where } \boldsymbol{\delta}_j \sim \mathcal{MG}(0,\boldsymbol\Sigma)$$
\bigskip
\underline{\textbf{Loading factors ($\boldsymbol{L}$):}} \medskip
The loadings are contained in $\boldsymbol{L}_{(l,k)}$. It represents the linear relationship between the latent variables in $\boldsymbol{\Delta}$ and the log-expected intensity $\log(\boldsymbol{S})$. \medskip
\scriptsize
$$
\mathbf{L}=\left[\begin{array}{cccc}
l_{1,1} & 0 & \ldots & 0 \\
l_{2,1} & l_{2,2} & \ldots & 0 \\
l_{3,1} & l_{3,2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
l_{l, 1} & l_{l, 2} & \ldots & l_{l, k}
\end{array}\right]
$$
------------------------------------------------------------------------
\includegraphics[width=0.925\textwidth]{images/thorson345.png}
\medskip
\tiny
Thorson, J. T., Scheuerell, M. D., Shelton, A. O., See, K. E., Skaug, H. J., & Kristensen, K. (2015). Spatial factor analysis: a new tool for estimating joint species distributions and correlations in species range. Methods in Ecology and Evolution, 6(6), 627-637.
------------------------------------------------------------------------
\frametitle{How to model jointly these species?}
<!-- \large -->
The interpretation of $\Delta$ is complicated because $\boldsymbol{L}$ is triangular inferior to ensure identifiability (something pretty common in dynamic factor analysis). \bigskip
Interpretation can be simplified by rotating the loading factors and the spatial factors.
\bigskip
$$
\begin{aligned}
& \boldsymbol{\Delta}^{\prime}=\boldsymbol{H} \Delta \\
& \boldsymbol{L}^{\prime}=\boldsymbol{L H}^{-1}
\end{aligned}
$$
\bigskip
$H$ can be computed in several ways.
- through standard diagonalization ($\equiv$ EOF/PCA)
- Varimax rotation $\rightarrow$ pushing the spatial factors towards $0$ or $\pm 1$.
- Quartimin rotation $\rightarrow$ same but drop constraints of orthogonality.
\medskip
The last two are used to minimize the number of factors needed to explain $\boldsymbol{\Delta}$
------------------------------------------------------------------------
\frametitle{How to model jointly these species?}
The last point is the covariance among species / variables.
$$Cov[\Delta_{(\cdot,j)},\Delta_{(\cdot,j')}] = \sum^k_{p=m} l_{j m} l_{j^{\prime} m}$$
$$Cor[\Delta_{(\cdot,j)},\Delta_{(\cdot,j')}] = \frac{\sum^k_{m=1} l_{j m} l_{j^{\prime} m}}{\sqrt{\sum^k_{m=1} l_{j m}^2} \sqrt{\sum^k_{m=1} l_{j^{\prime} m}^2}}$$
\medskip
\center
\includegraphics[width=0.35\textwidth]{images/thorson6.png}
# Model inference
\tableofcontents[currentsection]
------------------------------------------------------------------------
\frametitle{How to infer such model?}
\large
Standard methods are not efficient.
\bigskip
The keystone is the likelihood:
$$L_M(\textcolor{red}{\boldsymbol{\theta}}) = P (\textcolor{BaptisteGreen}{\boldsymbol{Y}} | \textcolor{red}{\boldsymbol{\theta}}) = \int_{\mathbb{R}^{q}} P (\textcolor{BaptisteGreen}{\boldsymbol{Y}}, \textcolor{BaptisteBlue}{\boldsymbol{\delta}} | \textcolor{red}{\boldsymbol{\theta}}) d\textcolor{BaptisteBlue}{\boldsymbol{\delta}}$$
\medskip
\footnotesize
$\textcolor{BaptisteGreen}{\boldsymbol{Y}}$ are the observations, $\textcolor{red}{\boldsymbol{\theta}}$ are the parameters, $\textcolor{BaptisteBlue}{\boldsymbol{\delta}}$ are the latent random variables.
\normalsize
\medskip
\pause
In a spatio-temporal context $q$ can be very high \smallskip
\scriptsize
\quad \quad \quad \ding{224} require efficient numerical methods (1) to bypass the integration step,
\quad \quad \quad \phantom{\ding{224}} (2) to reduce the dimensionality of $\textcolor{BaptisteBlue}{\boldsymbol{\delta}}$ and (3) to derive efficiently the likelihood.
\normalsize
\medskip
\pause
Three methods to enhance computing:
- Laplace approximation (= approximation of the likelihood)
- SPDE approach (= approximation of the Gaussian random effect)
- Automatic differentiation (= efficient derivation technics)
\medskip
\footnotesize
\pause
\textbf{\underline{R package:}} `R-INLA` for bayesian inference (Rue et al., 2017) and `TMB` for maximum likelihood inference (Kristensen et al., 2015).
------------------------------------------------------------------------
```{=tex}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{center}
\textbf{SPDE approach}
\end{center}
\end{column}
\begin{column}{0.5\textwidth}
\begin{center}
\textbf{Laplace approximation}
\end{center}
\end{column}
\end{columns}
```
```{=tex}
\begin{columns}
\begin{column}{0.5\textwidth}
\center
\scriptsize
\textbf{\underline{First set of results}}
\tiny
\medskip
A Gaussian field wih Matérn Covariance can be represented as a Gauss-Markov field \ding{224} sparse representation of the spatial effect
\begin{center}
\includegraphics[width=0.35\textwidth]{images/spde.png}
\end{center}
\scriptsize
\textbf{\underline{Second set of results}}
\tiny
\includegraphics[width=0.65\textwidth]{images/spde1.png}
\includegraphics[width=0.65\textwidth]{images/spde2.png}
\end{column}
\begin{column}{0.5\textwidth}
\scriptsize \medskip
\textbf{\underline{Conditions required:}}
\begin{itemize}
\item normality of the random effect $\delta$
\item some regularity conditions on $f$ (\textit{e.g.} only one maximum)
\end{itemize}
\begin{center}
\includegraphics[width=1\textwidth]{images/gaussian_laplace.png} \\
\scriptsize
\textbf{The true marginal (\textcolor{BaptisteBlue}{blue}), the Laplace approximation (\textcolor{red}{red}) and the Gaussian approximation (\textcolor{BaptisteOrange}{orange}).}
\end{center}
\end{column}
\end{columns}
```
# Towards more complex methods
\tableofcontents[currentsection]
------------------------------------------------------------------------
\frametitle{Towards more complex methods}
\medskip
- Modelling population dynamics \medskip
- Modelling movement \medskip
In both cases, this becomes a state space model where:
$$S(t,s)=g\left(S(t-1,s)\right) \cdot e^{\varepsilon(t,s)}$$
where: \medskip
\quad ${\varepsilon}(t,s) \sim \mathcal{MN}(0,\boldsymbol{\Sigma})$, \medskip
\quad $g:\mathbb{R}^L \rightarrow \mathbb{R}^L$ the function modeling population dynamics or movement. \medskip
\begin{center}
\includegraphics[width=0.4\textwidth]{images/state_space.png}
\end{center}
------------------------------------------------------------------------
\frametitle{Modelling population dynamics}
\center
\only<1>{\includegraphics[width=0.85\textwidth]{images/hierarchical_model1.png}}
\only<2>{\includegraphics[width=0.85\textwidth]{images/hierarchical_model2.png}}
\only<3>{\includegraphics[width=0.85\textwidth]{images/hierarchical_model3.png}}
\only<4>{\includegraphics[width=0.85\textwidth]{images/hierarchical_model4.png}}
\only<5>{\includegraphics[width=0.85\textwidth]{images/hierarchical_model5.png}}
\only<6>{\includegraphics[width=0.85\textwidth]{images/hierarchical_model6.png}}
------------------------------------------------------------------------
\center
\includegraphics[width=1\textwidth]{images/spatial_dyn.png}
------------------------------------------------------------------------
\frametitle{Modelling movement}
\large
Movement will be modelled by a matrix $\mathbf{M}^*_{(n\times n)}$ that is instantaneous movement rate. $\mathbf{M}^*$ is used to model movement from one time step $t$ to another. \bigskip
$\mathbf{M}$ is a combination of 3 matrices:
$$\mathbf{M}^* = \mathbf{D}^* + \mathbf{Z}^* + \mathbf{V}^*$$
\medskip
where $\mathbf{D}^*$ is \underline{diffusion}, $\mathbf{Z}^*$ is \underline{preference towards a specific habitat}, $\mathbf{V}^*$ is \underline{advection}. \medskip
\bigskip
Then to get the movement matrix $\mathbf{M}(t) = \exp (\mathbf{M}^* \cdot \Delta t)$, where $\Delta t$ is the duration of the interval
starting at time $t$. \medskip
All columns of $\mathbf{M}(t)$ sum to 1.
------------------------------------------------------------------------
\begin{center}
\includegraphics[width=0.85\textwidth]{images/movement.png}
\end{center}
\tiny
Thorson, J. T., Barbeaux, S. J., Goethel, D. R., Kearney, K. A., Laman, E. A., Nielsen, J. K., ... & Thompson, G. G. (2021). Estimating fine‐scale movement rates and habitat preferences using multiple data sources. Fish and Fisheries, 22(6), 1359-1376.
------------------------------------------------------------------------
\frametitle{Take home message}
\large
\textbf{Main ideas:} \medskip
- \underline{hierarchical} modelling (not geostatistics per se)
\medskip
- spatial/temporal \underline{correlation}
\medskip
- multivariate analysis \medskip
\quad \ding{224} extract \underline{structuring/shared patterns}, and their variation in time \medskip
\quad \ding{224} quantify \underline{correlation among species/variables}
\bigskip
\center
\textbf{Many applications in ecology (and other fields)} \medskip
\textbf{Many statistical developments too} \medskip
\textbf{But may require new inference methods...} \medskip
------------------------------------------------------------------------
\Large
\center
\textbf{Appendices}
------------------------------------------------------------------------
\center
\includegraphics[width=0.7\linewidth]{"images/covariogram.png"}