This repository has been archived by the owner on Nov 18, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathc_codegen.py
312 lines (275 loc) · 9.28 KB
/
c_codegen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Copyright (C) 2016, 2017 University of Vienna
# All rights reserved.
# BSD license.
# Author: Ali Baharev <ali.baharev@gmail.com>
from __future__ import print_function, division
from nx import dfs_preorder_nodes, topological_sort
from dag_to_py import OPERATOR as FWD_OPERATOR, lin_comb as fwd_lin_comb
from dag import ntype
from py3compat import izip
from utils import StdoutHijack
def print_fwd_subgraph(g_sub, values):
# The values are necessary only due to a bug in AMPL: Lambda[3,3,1] = 1,
# so the constant propagation is not performed properly
_get_value.values = values
for n in topological_sort(g_sub):
print_fwd_node(g_sub, n, g_sub.node[n])
_get_value.values = None
def print_forward_sweep(g, seen_def_vars, Ci):
print()
print(' // Forward sweep on constraint {}, {}'.format(Ci, g.node[Ci]['name']))
print()
deps = get_deps(g, Ci)
deps = remove_seen_def_vars(g, seen_def_vars, deps)
for n in topological_sort(g.subgraph(deps)):
print_fwd_node(g, n, g.node[n], seen_def_vars=seen_def_vars)
def remove_seen_def_vars(g, seen_def_vars, deps):
seen = [n for n in deps if n in seen_def_vars]
remove = set(seen)
for s in seen:
remove.update(get_deps(g, s))
return [n for n in deps if n not in remove]
def print_backward_sweep(g, Ci, values, input_vars=None):
print('\n // Backward sweep on constraint {}'.format(Ci))
_get_value.values = values
# _assign is hacked so that input variables are not differentiated
_assign.input_vars = input_vars if input_vars is not None else set()
# Jacobian is unused
seen = set() # Tells whether to use = or += with u_i_j
# Slight inefficiency: Constraint dependencies were already computed in
# print_forward_sweep. We throw it away and recompute deps for clarity.
deps = get_deps(g, Ci)
bwd_eval_order = list(topological_sort(g.subgraph(deps)))
for n in reversed(bwd_eval_order):
__print_backward_node(g, n, g.node[n], seen)
_get_value.values = None
_assign.input_vars = None
def get_deps(g, source):
g.reverse(copy=False)
deps = list(dfs_preorder_nodes(g, source=source))
g.reverse(copy=False)
return deps
#-------------------------------------------------------------------------------
def __print_backward_node(g, n, d, seen):
kind = d['kind']
op_func = OPERATOR.get(kind, None)
# operators
if op_func is not None:
fwd_in_comment(g, n, d)
args = tuple(pred for pred in g.predecessors(n))
op_func(g, n, seen, *args)
# linear combination
elif kind == ntype.lin_comb:
fwd_in_comment(g, n, d)
lin_comb(g, n, seen)
# constraint
elif kind == ntype.con:
fwd_in_comment(g, n, d)
start_new_constraint(g, n, d, seen)
# defined variable
elif kind == ntype.defvar:
print() # It is like fwd_in_comment:
print(' // defined variable', n, d['name'])
defined_var(g, n, seen)
# variable
elif kind == ntype.var:
pass
# number
elif kind == ntype.num:
pass # That's OK
# should never happen
else:
raise AssertionError(str((n, d)))
def fwd_in_comment(g, n, d):
# Only serves for debugging
with StdoutHijack() as logger:
print_fwd_node(g, n, d)
lines = logger.captured_text().splitlines()
lines = [l for l in lines if l]
lines[0] = '\n // ' + lines[0].strip()
print('\n'.join(lines))
def get_u(node_id):
assert get_u.con_idx is not None
first_char = node_id[0]
assert first_char == 't' or first_char == 'v', node_id
return 'u_' + get_u.con_idx + '_' + node_id[1:]
get_u.con_idx = None # This is set locally, must NOT be set on the top level
def start_new_constraint(g, n, d, seen):
seen.clear()
get_u.con_idx = n[1:]
constraint(g, n, seen)
def _s(node_id):
first_char = node_id[0]
if first_char == 'v' or first_char == 't':
return node_id
value = _get_value(node_id)
return value if value[0] != '-' else '(%s)' % value
def _get_value(node_id):
assert node_id[0] == 'n', node_id
return _get_value.values[node_id]
_get_value.values = None # Set by print_backward_sweep or by print_fwd_subgraph
def _assign(u_k, seen, *args):
# For input vars v_j we fix u_i_j to 0. We nevertheless put into comment
# the code that would be generated if v_j was not fixed.
# Get column index corresponding to u_k:
j = int(u_k.rsplit('_', 1)[1]) # 'u_i_j' -> j as int
prefix = ' // ' if j in _assign.input_vars else ' '
assign = '%s +=' if u_k in seen else 'double %s ='
print((prefix + assign) % u_k, *args, end=';\n')
#
if j in _assign.input_vars and u_k not in seen:
print(' const double %s = 0.0;' % u_k)
seen.add(u_k)
_assign.input_vars = None # It will be set by print_backward_sweep
def constraint(g, n, seen):
# C_k = t_i
# u_i = 1.0
(last, ) = tuple(g.predecessors(n))
_assign(get_u(last), seen, '1.0')
def defined_var(g, n, seen):
# v_i = t_k
# u_k (+)= u_i
(t_k, ) = tuple(g.predecessors(n))
if t_k[0] != 'n':
u_k = get_u(t_k)
_assign(u_k, seen, get_u(n))
def plus(g, n, seen, x, y):
sumlist(g, n, seen, x, y)
def sumlist(g, n, seen, *args):
# t_i = t_r + ... + t_z
# u_r (+)= u_i
# ...
# u_z (+)= u_i
u_i = get_u(n)
for arg in args:
if arg[0] != 'n':
_assign(get_u(arg), seen, u_i)
def minus(g, n, seen, *args):
t_r, t_s = args
# t_i = t_r - t_s
# u_r (+)= u_i
# u_s (+)= -u_i
u_i = get_u(n)
if t_r[0] != 'n':
_assign(get_u(t_r), seen, u_i)
if t_s[0] != 'n':
_assign(get_u(t_s), seen, '-', u_i)
def log(g, n, seen, x):
# t_i = log(t_k)
# u_k (+)= (1/t_k)*u_i
u_k = get_u(x)
u_i = get_u(n)
_assign(u_k, seen, '(1.0/%s) * %s' % (_s(x), u_i))
def power(g, n, seen, x, y):
# t_i = pow(base, power)
# u_k (+)= power*pow(base, power-1)*u_i
assert y[0] == 'n', (n, x, y)
u_i = get_u(n)
u_k = get_u(x)
pwer = g.node[y]['value']
_assign(u_k, seen,'{pwer}*pow({x}, {pwer}-1)*{u_i}'.format(pwer=pwer,
x=x, u_i=u_i))
def divide(g, n, seen, x, y):
# t_i = t_r/t_s
# u_r (+)= (1/t_s) * u_i
# u_s (+)= -(1/t_s) * t_i * u_i
u_i = get_u(n)
if x[0] != 'n':
u_r = get_u(x)
_assign(u_r, seen, '(1.0/{t_s})*{u_i}'.format(t_s=_s(y), u_i=u_i))
if y[0] != 'n':
u_s = get_u(y)
_assign(u_s, seen,'-(1.0/{t_s})*{t_i}*{u_i}'.format(t_s=_s(y),
t_i=n, u_i=u_i))
def negate(g, n, seen, x):
# t_i = -t_s
# u_s (+)= -u_i
u_s = get_u(x)
u_i = get_u(n)
_assign(u_s, seen, '-', u_i)
def exp(g, n, seen, x):
# t_i = exp(t_r)
# u_r = t_i * u_i
u_i = get_u(n)
u_r = get_u(x)
_assign(u_r, seen, '%s * %s' % (n, u_i))
def multiply(g, n, seen, x, y):
# t_i = t_r*t_s
# u_r (+)= t_s * u_i
# u_s (+)= t_r * u_i
u_i = get_u(n)
_multiply(x, y, u_i, seen)
_multiply(y, x, u_i, seen)
def _multiply(t_r, t_s, u_i, seen):
if t_r[0] != 'n':
# u_r (+)= t_s * u_i
u_r = get_u(t_r)
_assign(u_r, seen, _s(t_s), '*', u_i)
def lin_comb(g, n, seen):
# t_i = sum c_k t_k
# for each k:
# u_k (+)= c_k * u_i
args = tuple(g.predecessors(n))
coeffs = g.node[n]['coeffs']
assert len(args) == len(coeffs)
u_i = get_u(n)
assert u_i in seen, u_i
for t_k, c_k in izip(args, coeffs):
if t_k[0] == 'n':
continue
u_k = get_u(t_k)
if c_k == '1.0':
rhs = u_i
elif c_k == '-1.0':
rhs = '-' + u_i
elif c_k == '0.0':
rhs = '0.0'
else:
rhs = '%s * %s' % ('(%s)' % c_k if c_k[0] == '-' else c_k, u_i)
_assign(u_k, seen, rhs)
OPERATOR = {
'plus': plus,
'minus': minus,
'mult': multiply,
'div': divide,
'neg': negate,
'sum': sumlist,
'exp': exp,
'log': log,
'pow': power,
}
#===============================================================================
def fwd_assign(n, *args):
print(' const double', n, '=', *args, end=';\n')
# TODO Keep in sync with dag_to_py.py
def print_fwd_node(g, n, d, seen_def_vars=None):
seen_def_vars = seen_def_vars if seen_def_vars is not None else set()
kind = d['kind']
op_func = FWD_OPERATOR.get(kind, None)
# operators
if op_func is not None:
args = tuple((pred, g.node[pred]) for pred in g.predecessors(n))
rhs = op_func(*args)
fwd_assign(n, rhs)
# linear combination
elif kind == ntype.lin_comb:
fwd_assign(n, fwd_lin_comb(g, n))
# constraint
elif kind == ntype.con:
(last, ) = tuple(g.predecessors(n))
fwd_assign(n, last, '; // ', d['name'])
# defined variable
elif kind == ntype.defvar:
(last, ) = tuple(g.predecessors(n))
fwd_assign(n, _s(last))
print(' // defined variable:', d['name'])
seen_def_vars.add(n)
# variable
elif kind == ntype.var:
pass # Write variable assignments first?
# number
elif kind == ntype.num:
pass # That's OK
# should never happen
else:
raise AssertionError(str((n, d)))