-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGrid.cpp
233 lines (225 loc) · 7.7 KB
/
Grid.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#include<iostream>
#include <cmath>
#include<cstdlib>
#include <algorithm>
#include<iomanip>
#include<fstream>
#include "Grid.h"
// templte function for 2d array creation
template <class T>
T** array2d(int m, int n){ //(dimx,dimy)
// allocate contiguous 2d array in memory A[y][x]
T** A = new T*[n];
T* B = new T[m*n];
for(int i=0; i<n; i++){
A[i] = &(B[i*m]);
}
return A;
}
// save function for octave data
void save(double** data, int timestep,int dimx, int dimy)
{
std::ofstream myfile;
char filename[11];
sprintf(filename,"./eta/eta%05d.dat", timestep);
myfile.open(filename);
for (int j = 0; j < dimy; j++){
for (int i=0;i<dimx;i++){
myfile << data[j][i] << " ";
}
myfile << "\n";
}
myfile.close();
}
Grid::Grid(double m_x, double m_y, double m_dx, double m_dy, bathy m_slope) : x_length(m_x), y_length(m_y), dx(m_dx), dy(m_dy), slope(m_slope){}
void Grid::setDepth(double m_h){
grid_dimx = x_length/dx+2;
grid_dimy = y_length/dy+2;
h0 = new double*[grid_dimy];
for(int i = 0; i < grid_dimy; i++){
h0[i] = new double[grid_dimx];
}
//initialize h0
if(slope == flat){ // flat
std::cout << "Flat case"<< std::endl;
for(int j = 1; j < grid_dimy-1; j++){
for(int i = 1; i < grid_dimx-1; i++){
h0[j][i] = m_h;
}
}
}else if(slope == xslope){ // x slope
std::cout << "X-slope"<< std::endl;
float x_step, cum_x_step;
x_step = m_h/(grid_dimx-3);
cum_x_step = 0;
for(int i = 1; i < grid_dimx-1; i++){
for(int j = 1; j < grid_dimy-1; j++){
h0[j][i] = cum_x_step;
}
cum_x_step += x_step;
}
}
else if(slope == yslope){ // y slope
std::cout << "Y-slope"<< std::endl;
float y_step, cum_y_step;
y_step = m_h/(grid_dimy-3);
cum_y_step = 0;
for(int i = 0; i < grid_dimy; i++){
for(int j = 0; j < grid_dimx; j++){
h0[i][j] = cum_y_step;
}
cum_y_step += y_step;
}
}
// initialize edges with 0
for(int i = 0; i < grid_dimy; i++){
h0[i][0] = 0;
h0[i][grid_dimx-1] = 0;
}
for(int i = 0; i < grid_dimx; i++){
h0[0][i] = 0;
h0[grid_dimy-1][i] = 0;
}
}
double Grid::get_x(){return x_length;}
double Grid::get_y(){return y_length;}
double Grid::get_dx(){return dx;}
double Grid::get_dy(){return dy;}
double** Grid::get_h(){return h;}
int Grid::get_grid_dimx(){return grid_dimx;}
int Grid::get_grid_dimy(){return grid_dimy;}
void Grid::show(){
std::cout << "Grid resolution : " << x_length/dx+2 << "x" << y_length/dy+2 << std::endl;
std::cout << "Max Depth : " << hmax << std::endl;
std::cout << "Min Depth : " << hmin << std::endl;
}
void Grid::maxDepth(){
hmax = 0;
for(int j=0; j<grid_dimy;j++){
for(int k=0; k<grid_dimx;k++){
hmax = fmax(hmax,h0[j][k]);
}
}
}
void Grid::minDepth(){
hmin = h0[1][1];
for(int j=1; j<grid_dimy-1;j++){
for(int k=1; k<grid_dimx-1;k++){
hmin = fmin(hmin,h0[j][k]);
}
}
}
void Grid::initialize(){
int mode=1;
h = array2d<double>(grid_dimx,grid_dimy);
u = array2d<double>(grid_dimx,grid_dimy);
v = array2d<double>(grid_dimx,grid_dimy);
zeta = array2d<double>(grid_dimx,grid_dimy);
zeta_star = array2d<double>(grid_dimx,grid_dimy);
if(mode==1){
for(int k=0; k<grid_dimy;k++){
for(int j=0; j<grid_dimx;j++){
zeta[k][j] = 0.0;
zeta_star[k][j] = 0.0;
h[k][j] = h0[k][j]+zeta[k][j];
u[k][j] = 0.0;
v[k][j] = 0.0;
}
}
//zeta[grid_dimx/2][grid_dimy/2] = 1.0;
for(int k=grid_dimy/2; k<grid_dimy/2+2;k++){
for(int j=grid_dimx/2; j<grid_dimx/2+2;j++){
//std::cout << k << " " << j << " ";
zeta[k][j] = 1.0;
}
}
}
this->maxDepth();
this->minDepth();
initialized = 1;
}
int Grid::solve(Grid myGrid, float dt,float time, float epsilon){
std::cout << "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++" << std::endl;
std::cout << "|░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░|" << std::endl;
std::cout << "|░░░░Shallow Water 2D░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░|" << std::endl;
std::cout << "|░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░|" << std::endl;
std::cout << "|░░░░berkay pirlepeli░░░░2018░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░|" << std::endl;
std::cout << "|░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░|" << std::endl;
std::cout << "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++" << std::endl;
if(!initialized){
std::cout << "parameters is not initialized" << std::endl;
return -1;
}else{
// Test stability criteria
double min_spacing = myGrid.get_dx();
if (min_spacing > myGrid.get_dy()){
min_spacing = myGrid.get_dy();}
if(dt > (min_spacing / (sqrt(2*gravity*hmax)) )){
std::cerr << "Error! Stability Criteria is not satisfied." << std::endl;
}
double x = myGrid.get_x();
double y = myGrid.get_y();
//open netcdf file
NcFile ofile("output.nc", NcFile::Replace);
// add dimensions
NcDim *dim_x = ofile.add_dim("x", grid_dimx);
NcDim *dim_y = ofile.add_dim("y", grid_dimy);
NcDim *dim_t = ofile.add_dim("time");
// create variables
NcVar *var_z = ofile.add_var("zeta", ncFloat, dim_t, dim_y, dim_x);
var_z->add_att("units", "meter");
var_z->add_att("long_name", "free surface height");
double he,hw,hn,hs;
// simulation loop
std::cout << "Simulation Loop" << std::endl;
for(int t=0;t<time/dt+1;t++){
// predict velocities
for(int j=1;j<grid_dimy-1;j++){
for(int k=1;k<grid_dimx-1;k++){
u[j][k]=u[j][k]-dt*gravity*(zeta[j][k+1]-zeta[j][k])/dx;
v[j][k]=v[j][k]-dt*gravity*(zeta[j+1][k]-zeta[j][k])/dy;
}
}
// predict sea-level
for(int j=1;j<grid_dimy-1;j++){
for(int k=1;k<grid_dimx-1;k++){
if(u[j][k]>0)
he=h[j][k];
else if(u[j][k]<0)
he=h[j][k+1];
if(u[j][k-1]>0)
hw=h[j][k-1];
else if(u[j][k-1]<0)
hw=h[j][k];
if(v[j][k]>0)
hn=h[j][k];
else if(v[j][k]<0)
hn=h[j+1][k];
if(v[j-1][k]>0)
hs=h[j-1][k];
else if(v[j-1][k]<0)
hs=h[j][k];
zeta_star[j][k]=zeta[j][k]-dt*(u[j][k]*he-u[j][k-1]*hw)/dx-dt*(v[j][k]*hn-v[j-1][k]*hs)/dy;
// shapiro filter
zeta[j][k]=(1-epsilon)*zeta_star[j][k]+0.25*epsilon*(zeta_star[j][k-1]+zeta_star[j][k+1]+zeta_star[j-1][k]+zeta_star[j+1][k]);
}
}
for(int j=1;j<grid_dimy-1;j++){
for(int k=1;k<grid_dimx-1;k++){
h[j][k] = h0[j][k] + zeta[j][k];
}
}
if(t%5==0){
var_z->put_rec(&zeta[0][0],t/5);
}
if(t%50==0){
std::cout << "Zeta at " << (t)*dt << "s saved." << std::endl;
save(zeta, t, grid_dimx, grid_dimy);
}
}
// end of simulation loop
std::cout << std::endl << "End of Simulation Loop" << std::endl;
ofile.close();
}
return 0;
}